Bessel Function 0 ∫ ∞ lo g 3 ( x ) J n ( x ) d x = ( ψ ( a ) ( c n + b ) + lo g d ) f + h g ψ ( i ) ( l n + k )
Find a + b + c + d + f + g + h + i + k + l
Clarifications:
J n ( x ) is the Bessel function.
ψ ( λ ) ( ⋅ ) represents their usual meanings (Polygamma)
This is a part of Hot Integrals
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
If we define F n ( u ) = ∫ 0 ∞ x u J n ( x ) d x then standard integration tables tell us that F n ( u ) = 2 u Γ ( 2 1 ( 1 + n − u ) ) Γ ( 2 1 ( 1 + n + u ) ) . If we define G α ( u ) = Γ ( α − u ) Γ ( α + u ) , then G α ′ ( u ) G α ′ ′ ( u ) G α ′ ′ ′ ( u ) = = = G α ( u ) [ ψ ( α + u ) + ψ ( α − u ) ] G α ( u ) [ ψ ( α + u ) + ψ ( α − u ) ] 2 + G α ( u ) [ ψ ′ ( α + u ) − ψ ′ ( α − u ) ] G α ( u ) [ ψ ( α + u ) + ψ ( α − u ) ] 3 + 3 G α ( u ) [ ψ ( α + u ) + ψ ( α − u ) ] [ ψ ′ ( α + u ) − ψ ′ ( α − u ) ] + G α ( u ) [ ψ ′ ′ ( α + u ) + ψ ′ ′ ( α − u ) ] and so G α ( 0 ) G α ′ ′ ( 0 ) = = 1 4 ψ ( α ) 2 G α ′ ( 0 ) G α ′ ′ ′ ( 0 ) = = 2 ψ ( α ) 8 ψ ( α ) 3 + 2 ψ ′ ′ ( α ) Thus, with α = 2 1 ( 1 + n ) , we have F n ( u ) = 2 u G α ( 2 1 u ) and hence ∫ 0 ∞ ( ln x ) 3 J n ( x ) d x = = = F n ′ ′ ′ ( 0 ) = ( ln 2 ) 3 G α ( 0 ) + 2 3 ( ln 2 ) 2 G α ′ ( 0 ) + 4 3 ( ln 2 ) 2 G α ′ ′ ( 0 ) + 8 1 G α ′ ′ ′ ( 0 ) ( ln 2 ) 3 + ( ln 2 ) 2 ψ ( α ) + 3 ( ln 2 ) ψ ( α ) 2 + ψ ( α ) 3 + 4 1 ψ ′ ′ ( α ) ( ψ ( 0 ) ( 2 1 ( n + 1 ) ) + ln 2 ) 3 + 4 1 ψ ( 2 ) ( 2 1 ( n + 1 ) ) , and so the answer is 0 + 1 + 2 + 2 + 3 + 1 + 4 + 2 + 1 + 2 = 1 8 .