Hot Integral - 16

Calculus Level 5

Bessel Function \textbf{Bessel Function} 0 log 3 ( x ) J n ( x ) d x = ( ψ ( a ) ( n + b c ) + log d ) f + g h ψ ( i ) ( n + k l ) \displaystyle \int\limits_{0}^{\infty} \log^3(x)J_n(x) dx = \left(\psi^{(a)}(\frac{n+b}{c}) + \log d\right)^f + \frac{g}{h}\psi^{(i)}\left(\frac{n+k}{l}\right)

Find a + b + c + d + f + g + h + i + k + l a+b+c+d+f+g+h+i+k+l

Clarifications:

  • J n ( x ) J_n(x) is the Bessel function.

  • ψ ( λ ) ( ) \psi^{(\lambda)}(\cdot) represents their usual meanings (Polygamma)


All fractions are in their simplest form .

This is a part of Hot Integrals


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 14, 2016

If we define F n ( u ) = 0 x u J n ( x ) d x F_n(u) \; = \; \int_0^\infty x^u J_n(x)\,dx then standard integration tables tell us that F n ( u ) = 2 u Γ ( 1 2 ( 1 + n + u ) ) Γ ( 1 2 ( 1 + n u ) ) . F_n(u) \; =\; 2^u \frac{\Gamma\big(\tfrac12(1+n+u)\big)}{\Gamma\big(\tfrac12(1+n-u)\big)}\;. If we define G α ( u ) = Γ ( α + u ) Γ ( α u ) , G_\alpha(u) \; = \; \frac{\Gamma(\alpha+u)}{\Gamma(\alpha-u)} \;, then G α ( u ) = G α ( u ) [ ψ ( α + u ) + ψ ( α u ) ] G α ( u ) = G α ( u ) [ ψ ( α + u ) + ψ ( α u ) ] 2 + G α ( u ) [ ψ ( α + u ) ψ ( α u ) ] G α ( u ) = G α ( u ) [ ψ ( α + u ) + ψ ( α u ) ] 3 + 3 G α ( u ) [ ψ ( α + u ) + ψ ( α u ) ] [ ψ ( α + u ) ψ ( α u ) ] + G α ( u ) [ ψ ( α + u ) + ψ ( α u ) ] \begin{array}{rcl} G_\alpha'(u) & = & G_\alpha(u)\left[ \psi(\alpha+u) + \psi(\alpha-u)\right] \\ G_\alpha''(u) & = & G_\alpha(u)\left[\psi(\alpha+u) + \psi(\alpha-u)\right]^2 + G_\alpha(u)\left[\psi'(\alpha+u) - \psi'(\alpha-u)\right] \\ G_\alpha'''(u) & = & G_\alpha(u)\left[\psi(\alpha+u) + \psi(\alpha-u)\right]^3 + 3G_\alpha(u)\left[\psi(\alpha+u)+\psi(\alpha-u)\right]\left[\psi'(\alpha+u) - \psi'(\alpha-u)\right] \\ & & {}+ G_\alpha(u)\left[\psi''(\alpha+u) + \psi''(\alpha-u)\right] \end{array} and so G α ( 0 ) = 1 G α ( 0 ) = 2 ψ ( α ) G α ( 0 ) = 4 ψ ( α ) 2 G α ( 0 ) = 8 ψ ( α ) 3 + 2 ψ ( α ) \begin{array}{rclcrcl} G_\alpha(0) & = & 1 & \qquad \qquad & G_\alpha'(0) & = & 2\psi(\alpha) \\ G_\alpha''(0) & = & 4\psi(\alpha)^2 & \qquad \qquad & G_\alpha'''(0) & = & 8\psi(\alpha)^3 + 2\psi''(\alpha) \end{array} Thus, with α = 1 2 ( 1 + n ) \alpha = \tfrac12(1+n) , we have F n ( u ) = 2 u G α ( 1 2 u ) F_n(u) \,=\, 2^uG_\alpha(\tfrac12u) and hence 0 ( ln x ) 3 J n ( x ) d x = F n ( 0 ) = ( ln 2 ) 3 G α ( 0 ) + 3 2 ( ln 2 ) 2 G α ( 0 ) + 3 4 ( ln 2 ) 2 G α ( 0 ) + 1 8 G α ( 0 ) = ( ln 2 ) 3 + ( ln 2 ) 2 ψ ( α ) + 3 ( ln 2 ) ψ ( α ) 2 + ψ ( α ) 3 + 1 4 ψ ( α ) = ( ψ ( 0 ) ( 1 2 ( n + 1 ) ) + ln 2 ) 3 + 1 4 ψ ( 2 ) ( 1 2 ( n + 1 ) ) , \begin{array}{rcl} \displaystyle\int_0^\infty (\ln x)^3 J_n(x)\,dx & = & F_n'''(0) \; = \; (\ln2)^3 G_\alpha(0) + \tfrac32(\ln2)^2G_\alpha'(0) + \tfrac34(\ln2)^2G_\alpha''(0) + \tfrac18G_\alpha'''(0) \\ & = & (\ln 2)^3 + (\ln 2)^2 \psi(\alpha) + 3(\ln 2)\psi(\alpha)^2 + \psi(\alpha)^3 + \tfrac14\psi''(\alpha) \\ & = & \left(\psi^{(0)}(\tfrac12(n+1)\big) + \ln 2\right)^3 + \tfrac14\psi^{(2)}(\tfrac12(n+1)\big) \;, \end{array} and so the answer is 0 + 1 + 2 + 2 + 3 + 1 + 4 + 2 + 1 + 2 = 18 0+1+2+2+3+1+4+2+1+2 \,=\, 18 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...