Hot Integral - 18

Calculus Level 5

Let f ( t ) = 0 π sin ( t sin ( π 4 ) sin x ) sinh ( t sin ( π 4 ) sin x ) d x \displaystyle f(t)=\int\limits_{0}^{\pi} \sin\left(t\sin\left(\frac{\pi}{4}\right)\sin x\right) \sinh\left(t\sin\left(\frac{\pi}{4}\right)\sin x\right) \, dx

Then, L { f ( t ) } ( s ) = A π K ( s B + C ) D / E sin ( F G tan 1 ( H s J ) ) \mathcal{L}\left\{f(t)\right\}(s) = \frac{A\pi^K}{(s^B + C)^{D/E}}\sin\left(\frac{F}{G}\tan^{-1}\left(\frac{H}{s^J}\right)\right)

Evaluate A + B + C + D + E + F + G + H + J + K A+B+C+D+E+F+G+H+J+K

Details and Assumptions:

  • L \mathcal{L} represents Laplace transform.
  • D , E D,E and F , G F,G are co-prime.

This is a part of Hot Integrals


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 30, 2015

Since cosh ( x + i y ) = cosh x cos y + sinh x sin y \cosh(x+iy) \,=\, \cosh x \cos y + \sinh x \sin y , we see that f ( t ) = I m ( 0 π cosh ( 1 + i 2 t sin x ) d x ) f(t) \; =\; \mathrm{Im}\left(\int_0^\pi \cosh\big(\tfrac{1+i}{\sqrt{2}}t\sin x\big)\,dx\right) and hence ( L f ) ( s ) = 0 I m ( 0 π cosh ( 1 + i 2 t sin x ) d x ) e s t d t = 1 2 I m ( 0 π 0 ( e 1 + i 2 t sin x + e 1 + i 2 t sin x ) e s t d t d x ) = 1 2 I m ( 0 π ( 1 s 1 + i 2 sin x + 1 s + 1 + i 2 sin x ) d x ) = I m 0 π s s 2 i sin 2 x d x = s 0 π sin 2 x s 4 + sin 4 x d x = s 0 π c o s e c 2 x s 4 c o s e c 4 x + 1 d x = s R 1 s 4 ( t 2 + 1 ) 2 + 1 d t = 1 s 3 R 1 ( t 2 + 1 + i s 2 ) ( t 2 + 1 i s 2 ) d t = 1 s 3 R 1 ( t 2 + sec θ e i θ ) ( t 2 + sec θ e i θ ) d t \begin{array}{rcl} (\mathcal{L}f)(s) & = & \displaystyle \int_0^\infty \mathrm{Im}\left(\int_0^\pi \cosh \big(\tfrac{1+i}{\sqrt{2}}t\sin x\big)\,dx\right)\,e^{-st}\,dt \\ & = & \displaystyle\dfrac12\mathrm{Im}\left(\int_0^\pi \int_0^\infty \Big(e^{\frac{1+i}{\sqrt{2}}t\sin x} + e^{-\frac{1+i}{\sqrt{2}}t\sin x}\Big) e^{-st}\,dt\,dx\right) \\ & = & \displaystyle \dfrac12\mathrm{Im}\left(\int_0^\pi\left(\frac{1}{s-\frac{1+i}{\sqrt{2}}\sin x} + \frac{1}{s + \frac{1+i}{\sqrt{2}}\sin x}\right)\,dx\right) \\ & = & \displaystyle \mathrm{Im}\int_0^\pi \dfrac{s}{s^2 - i\sin^2x}\,dx \; = \; s\int_0^\pi \dfrac{\sin^2x}{s^4 + \sin^4x}\,dx \; = \; s\int_0^\pi \dfrac{\mathrm{cosec}^2\,x}{s^4\mathrm{cosec}^4\,x + 1}\,dx \\ & = & \displaystyle s\int_{\mathbb{R}} \frac{1}{s^4(t^2+1)^2 + 1}\,dt \; = \; \dfrac{1}{s^3}\int_{\mathbb{R}} \frac{1}{(t^2 + 1 + is^{-2})(t^2 + 1 - is^{-2})}\,dt \\ & = & \displaystyle\dfrac{1}{s^3}\int_{\mathbb{R}} \frac{1}{\big(t^2 + \sec \theta e^{i\theta}\big)\big(t^2 + \sec\theta e^{-i\theta}\big)}\,dt \end{array} where θ = tan 1 s 2 \theta = \tan^{-1}s^{-2} and we are using the substitution t = cot x t = \cot x .

By standard contour integration, we need to evaluate the residues of this integrand at the poles with positive imaginary part. These are i sec θ e ± 1 2 i θ i\sqrt{\sec\theta}e^{\pm\frac12i\theta} , and so ( L f ) ( s ) = 2 π i s 3 ( R e s z = i sec θ e 1 2 i θ + R e s z = i sec θ e 1 2 i θ ) 1 ( z 2 + sec θ e i θ ) ( z 2 + sec θ e i θ ) = 2 π i s 3 { 1 sec θ ( e i θ e i θ ) 1 2 i sec θ e 1 2 i θ + 1 sec θ ( e i θ e i θ ) 1 2 i sec θ e 1 2 i θ } = π 2 s 3 ( cos θ ) 3 2 cos 1 2 θ \begin{array}{rcl} (\mathcal{L}f)(s) & = & \displaystyle \dfrac{2\pi i}{s^3}\left(\mathrm{Res}_{z=i\sqrt{\sec\theta}e^{\frac12i\theta}} + \mathrm{Res}_{z=i\sqrt{\sec\theta}e^{-\frac12i\theta}}\right) \frac{1}{\big(z^2 + \sec \theta e^{i\theta}\big)\big(z^2 + \sec\theta e^{-i\theta}\big)} \\ & = & \displaystyle \dfrac{2\pi i}{s^3}\left\{ -\frac{1}{\sec\theta(e^{i\theta}-e^{-i\theta})}\frac{1}{2i\sqrt{\sec\theta}e^{\frac12i\theta}} + \frac{1}{\sec\theta(e^{i\theta}-e^{-i\theta})}\frac{1}{2i\sqrt{\sec\theta}e^{-\frac12i\theta}}\right\} \\ & = & \dfrac{\pi}{2s^3} \dfrac{(\cos\theta)^{\frac32}}{\cos\frac12\theta} \end{array} So much for the integration. Now to get the result in the right shape to answer the question. Since tan θ = s 2 \tan\theta = s^{-2} , we have sec 2 θ = s 4 + 1 s 4 \sec^2\theta =\dfrac{s^4+1}{s^4} , and so cos θ = s 2 s 4 + 1 \cos\theta = \dfrac{s^2}{\sqrt{s^4+1}} . Thus ( L f ) ( s ) = π 2 ( s 4 + 1 ) 3 4 sec 1 2 θ . (\mathcal{L}f)(s) \; = \; \frac{\pi}{2(s^4+1)^{\frac34}} \sec\tfrac12\theta \;. Finally we have sin θ = 1 s 4 + 1 \sin\theta = \dfrac{1}{\sqrt{s^4 + 1}} , and hence ( L f ) ( s ) = π 2 ( s 4 + 1 ) 1 4 sin θ sec 1 2 θ = π ( s 4 + 1 ) 1 4 sin 1 2 θ = π ( s 4 + 1 ) 1 4 sin [ 1 2 tan 1 ( s 2 ) ] . (\mathcal{L}f)(s) \; = \; \frac{\pi}{2(s^4+1)^{\frac14}}\sin\theta \sec\tfrac12\theta \; = \; \frac{\pi}{(s^4+1)^{\frac14}}\sin\tfrac12\theta \; = \; \frac{\pi}{(s^4+1)^{\frac14}}\sin\left[\tfrac12\tan^{-1}\big(s^{-2}\big)\right] \;. Thus the answer is 1 + 4 + 1 + 1 + 4 + 1 + 2 + 1 + 2 + 1 = 18 1+4+1+1+4+1 + 2 + 1 +2 + 1 = 18 .

damn goood ... salute !!!!

Aman Rajput - 5 years, 5 months ago

Log in to reply

Salute isn't good enough. Mark Hennings is the best user in Brilliant, you need to print and frame this solution!

Pi Han Goh - 5 years, 5 months ago

Log in to reply

all is this because of his experience

Aman Rajput - 5 years, 5 months ago

In your working in fifth line, For your integral of = 0 π sin 2 x s 4 + sin 4 x d x = \ldots = \displaystyle \int_0^\pi \dfrac{\sin^2 x}{s^4 + \sin^4 x} \, dx = \ldots how do you know when to use contour integration? I tried hacking it through various integration tricks like geometric series, Half tangent substitution, and many others, and I gave up. WolframAlpha also gave a seemingly wonky answer, so I thought there's no closed form.

Is there an indication on when to know it's suitable/easiest to use contour integration? (Treat me like I'm bad in contour integrals, hence my reluctance to use it)

Pi Han Goh - 5 years, 5 months ago

Log in to reply

It is difficult to give a general rule about that. If an integral can be expressed as the integral over R \mathbb{R} of a rational function, then the "sum of residues in the upper half plane" trick works well, provided that you can factorise the denominator.

There are a variety of standard tricks for converting integrals of rational expressions of trigonometric functions into the above form. One is a t = tan 1 2 x t = \tan\tfrac12x substitution, but this would have created an order 8 8 polynomial in the denominator, and that was too big for me! After a bit of playing around, I came up with the t = cot x t = \cot x substitution.

Another approach to this sort of integral is to try the complex substitution z = e i x z = e^{ix} , which converts integrals of rational functions of trigonometric functions between 0 0 and 2 π 2\pi into integrals of rational functions around the unit circle (in which case we need to add the residues at poles of modulus less than 1 1 ).

Mark Hennings - 5 years, 5 months ago

Log in to reply

Thank you for your reply, sage advice as usual!

Advertisement

Pi Han Goh - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...