Hot Integral!

Calculus Level 3

Evaluate:

x ln ( x + 1 + x 2 ) 1 + x 2 d x \large \int x \cdot \frac{\ln ( x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} dx

1 + x 2 l n ( x + 1 + x 2 ) + x \sqrt{1+x^2}\cdot ln(x+\sqrt{1+x^2})+x + c 1 + x 2 l n ( x + 1 + x 2 ) x \sqrt{1+x^2}\cdot ln(x+\sqrt{1+x^2})-x + c x 2 l n 2 ( x + 1 + x 2 ) x 1 + x 2 \frac{x}{2}\cdot ln^{2}(x+\sqrt{1+x^2}) - \frac{x}{\sqrt{1+x^2}} + c x 2 l n 2 ( x + 1 + x 2 ) + x 1 + x 2 \frac{x}{2} \cdot ln^2(x+ \sqrt{1+x^2}) + \frac{x}{\sqrt{1+x^2}} + c

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let us take f ( x ) = x 1 + x 2 \displaystyle f^{ '}(x) = \frac{x}{\sqrt{1+x^2}} and g ( x ) = l n ( x + 1 + x 2 ) g(x) = ln(x+\sqrt{1+x^2}) . Then,

f ( x ) = x 1 + x 2 = 1 2 2 x 1 + x 2 = 1 2 1 t = t = 1 + x 2 \displaystyle f(x)= \int\frac{x}{\sqrt{1+x^2}} = \frac{1}{2} \int\frac{2x}{\sqrt{1+x^2}} = \frac{1}{2}\int\frac{1}{\sqrt{t}} = \sqrt{t} = \sqrt{1+x^2}

(Where we have used the substitution 1 + x 2 = t 1+x^2 = t )

Also,

g ( x ) = 1 x + 1 + x 2 ( 1 + x 1 + x 2 ) g ( x ) = 1 1 + x 2 \displaystyle g^{ '}(x) = \frac{1}{x+\sqrt{1+x^2}}\cdot \left(1 + \frac{x}{\sqrt{1+x^2}}\right) \Rightarrow g^{ '}(x) = \frac{1}{\sqrt{1+x^2}}

And, by Integration By Parts, the required integral becomes:

I = g ( x ) f ( x ) g ( x ) f ( x ) d x I = l n ( x + 1 + x 2 ) ( 1 + x 2 ) 1 1 + x 2 1 + x 2 d x I = l n ( x + 1 + x 2 ) ( 1 + x 2 ) x + c \displaystyle I \quad =\quad g(x)f(x) -\int { g^{ \prime }\left( x \right) f(x)dx } \\ \displaystyle I\quad =\quad ln(x+\sqrt { 1+{ x }^{ 2 } } )\cdot (\sqrt { 1+{ x }^{ 2 } } )-\int { \frac { 1 }{ { \sqrt { 1+{ x }^{ 2 } } } } \cdot } \sqrt { 1+{ x }^{ 2 } } dx\\ \displaystyle I\quad =\quad ln(x+\sqrt { 1+{ x }^{ 2 } } )\cdot (\sqrt { 1+{ x }^{ 2 } } ) - x + c

And hence the answer.

Cheers!

Cool method!!

I cancelled out the two options with the ln^2 because when you differentiate those options, the ln^2 term still remains..:p

Krishna Ramesh - 5 years, 4 months ago
Sven Cats
Jun 1, 2018

Put $x=\sinh(u)$. The integral simplifies greatly, and can then be solved by integration by parts.

Hassan Abdulla
May 11, 2018

l e t x = tan ( θ ) d x = sec 2 ( θ ) d θ Trigonometric Substitution I = x ln ( x + 1 + x 2 ) 1 + x 2 d x = tan ( θ ) ln ( tan ( θ ) + 1 + tan 2 ( θ ) ) 1 + tan 2 ( θ ) sec 2 ( θ ) d θ I = tan ( θ ) sec ( θ ) ln ( tan ( θ ) + sec ( θ ) ) d θ u = ln ( tan ( θ ) + sec ( θ ) ) d θ d v = tan ( θ ) sec ( θ ) d u = sec ( θ ) ( tan ( θ ) + sec ( θ ) ) ( tan ( θ ) + sec ( θ ) ) v = sec ( θ ) integration by parts I = sec ( θ ) ln ( tan ( θ ) + sec ( θ ) ) sec 2 ( θ ) d θ I = sec ( θ ) ln ( tan ( θ ) + sec ( θ ) ) tan ( θ ) + c I = 1 + x 2 ln ( x + 1 + x 2 ) x + C tan ( θ ) = x sec ( θ ) = 1 + tan 2 ( θ ) \begin{matrix} let\quad x=\tan { \left( \theta \right) } \Rightarrow dx=\sec ^{ 2 }{ \left( \theta \right) } d\theta & & \color{#D61F06} \text{Trigonometric Substitution} \end{matrix}\\ I=\int { x\cdot \frac { \ln { ( } x+\sqrt { 1+x^{ 2 } } ) }{ \sqrt { 1+x^{ 2 } } } dx } =\int { \tan { \left( \theta \right) } \cdot \frac { \ln { ( } \tan { \left( \theta \right) } +\sqrt { 1+\tan ^{ 2 }{ \left( \theta \right) } } ) }{ \sqrt { 1+\tan ^{ 2 }{ \left( \theta \right) } } } \sec ^{ 2 }{ \left( \theta \right) } d\theta } \\ \begin{matrix} I=\int { \tan { \left( \theta \right) } \cdot \sec { \left( \theta \right) } \cdot \ln { \left( \tan { \left( \theta \right) } +\sec { \left( \theta \right) } \right) } d\theta } & & \color{#3D99F6} \begin{matrix} u=\ln { \left( \tan { \left( \theta \right) } +\sec { \left( \theta \right) } \right) } d\theta & dv=\tan { \left( \theta \right) } \cdot \sec { \left( \theta \right) } \\ du=\frac { \sec { \left( \theta \right) } \left( \tan { \left( \theta \right) } +\sec { \left( \theta \right) } \right) }{ \left( \tan { \left( \theta \right) } +\sec { \left( \theta \right) } \right) } & v= \sec { \left( \theta \right) } \end{matrix} &\color{#D61F06} \text{ integration by parts} \end{matrix}\\ I=\sec { \left( \theta \right) } \cdot \ln { \left( \tan { \left( \theta \right) } +\sec { \left( \theta \right) } \right) } -\int { \sec ^{ 2 }{ \left( \theta \right) } d\theta } \\ I=\sec { \left( \theta \right) } \cdot \ln { \left( \tan { \left( \theta \right) } +\sec { \left( \theta \right) } \right) } -\tan { \left( \theta \right) } +c\\ \begin{matrix} I=\sqrt { 1+x^{ 2 } } \ln { ( } x+\sqrt { 1+x^{ 2 } } )-x+C & & \color{#3D99F6} \begin{matrix} \tan { \left( \theta \right) } =x \\ \sec { \left( \theta \right) } =\sqrt { 1+\tan ^{ 2 }{ \left( \theta \right) } } \end{matrix} \end{matrix}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...