Hot Integral - 20

Calculus Level 5

x 4 + x 2 + x sinh x i d x = π A + i ( π B C + D π E F ) \displaystyle \int\limits_{-\infty}^{\infty} \frac{x^4+x^2+x}{\sinh x - i} dx = \frac{\pi}{A}+i(\frac{\pi^B}{C}+\frac{D\pi^E}{F})

Calculate A + B + C + D + E + F A+B+C+D+E+F

Details And Assumptions

  • gcd ( D , E ) = 1 \gcd(D,E)=1

  • A , B , C , D , E , F A,B,C,D,E,F are integers.

  • i = 1 i=\sqrt{-1}


This is a part of Hot Intergals


The answer is 140.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 29, 2015

The necessary integrals can be found in tables of standard integrals, but let us derive the answer properly.

For 0 < u < 1 0 < u < 1 we have I ( u ) = R e u x sinh x i d x = R 2 e u x e x 2 i e x d x = R 2 e ( u + 1 ) x ( e x i ) 2 d x I(u) \; = \; \int_{\mathbb{R}} \frac{e^{ux}}{\sinh x - i}\,dx \; = \; \int_{\mathbb{R}} \frac{2e^{ux}}{e^x - 2i - e^{-x}}\,dx \; = \; \int_{\mathbb{R}} \frac{2 e^{(u+1)x}}{(e^x-i)^2}\,dx Using the substitution t = e x t = e^x we obtain I ( u ) = 0 2 t u ( t i ) 2 d t 0 < u < 1 . I(u) \; = \; \int_0^\infty \frac{2t^u}{(t-i)^2}\,dt \qquad \qquad 0 < u < 1 \;. The function F ( z ) = 2 z u ( z i ) 2 F(z) \; = \; \frac{2z^u}{(z-i)^2} can be defined, and is analytic, on the domain obtained by removing the positive real axis (so that 0 < A r g z < 2 π 0 < \mathrm{Arg}z < 2\pi throughout) and the point i i . Integrating this function around the "keyhole" contour which runs:

  • from ϵ \epsilon to R R just above the positive real axis,
  • from R R to R e 2 π i Re^{2\pi i} in a circle of radius R R and centre 0 0 ,
  • from R e 2 π i Re^{2\pi i} to ϵ e 2 π i \epsilon e^{2\pi i} just below the positive real axis,
  • from ϵ e 2 π i \epsilon e^{2\pi i} to ϵ \epsilon in a circle of radius ϵ \epsilon and centre 0 0

where 0 < ϵ < 1 < R 0 < \epsilon < 1 < R equals 2 π i 2\pi i times the residue of F ( z ) F(z) at z = i z=i , and so, letting R R \to \infty and ϵ 0 \epsilon \to 0 , we see that I ( u ) e 2 π u i I ( u ) = 2 π i R e s z = i F ( z ) = 2 π i ( d d z ( z i ) 2 F ( z ) ) z = i = 2 π i ( 2 u z u 1 ) z = i = 4 π u e 1 2 π u i \begin{array}{rcl} I(u) - e^{2\pi u i}I(u) & = & 2\pi i \mathrm{Res}_{z=i} F(z) \; = \; 2\pi i \Big(\dfrac{d}{dz}(z-i)^2F(z)\Big)\Big\vert_{z=i} \\ & = & 2\pi i \big(2u z^{u-1}\big)\Big\vert_{z=i} \; = \; 4\pi u e^{\frac12\pi u i} \end{array} since F ( z ) F(z) has a double pole at z = i z=i . Thus I ( u ) = 4 π u e 1 2 π u i e 2 π u i 1 = 2 i e 1 2 π u i 2 π u i e 2 π u i 1 = 2 i e 1 2 π u i m = 0 B m ( 2 π u i ) m m ! = 2 i ( m = 0 ( 2 π u i ) m 4 m m ! ) ( m = 0 B m ( 2 π u i ) m m ! ) = 2 i m = 0 ( k = 0 m ( m k ) B k 4 k m ) ( 2 π u i ) m m ! \begin{array}{rcl} I(u) & = &\displaystyle -\frac{4\pi u e^{\frac12\pi u i}}{e^{2\pi u i} - 1} \; = \; 2i e^{\frac12\pi u i} \frac{2\pi u i}{e^{2\pi u i} - 1} \; = \; 2ie^{\frac12\pi u i} \sum_{m=0}^\infty B_m \dfrac{(2 \pi u i)^m}{m!} \\ & = & \displaystyle 2i \left( \sum_{m=0}^\infty \dfrac{(2\pi u i)^m}{4^m m!}\right)\left(\sum_{m=0}^\infty B_m \dfrac{(2\pi u i)^m}{m!}\right) \; = \; 2i \sum_{m=0}^\infty \left(\sum_{k=0}^m {m \choose k} \dfrac{B_k}{4^{k-m}}\right) \dfrac{(2\pi ui)^m}{m!} \end{array} for all 0 < u < 1 0 < u < 1 , where B 0 , B 1 , B 2 , B_0,B_1,B_2,\ldots are the Bernouilli numbers, so that J m = R x m sinh x i d x = 2 i ( 2 π i ) m k = 0 m ( m k ) B k 4 m k , m 0 . J_m \; = \; \int_{\mathbb{R}} \frac{x^m}{\sinh x - i}\,dx \; = \; 2i(2\pi i)^m \sum_{k=0}^m {m \choose k}\dfrac{B_k}{4^{m-k}} \;, \qquad \qquad m \ge 0 \;. But then J 1 = 4 π ( 1 4 B 0 + B 1 ) = π J 2 = 8 π 2 i ( 1 16 B 0 + 1 2 B 1 + B 2 ) = 1 6 π 2 i J 4 = 32 π 4 i ( 1 256 B 0 + 1 16 B 1 + 3 8 B 2 + B 3 + B 4 ) = 7 120 π 4 i \begin{array}{rcl} J_1 & = & -4\pi\left(\tfrac14B_0 + B_1\right) \; = \; \pi \\ J_2 & = & -8\pi^2i\left(\tfrac{1}{16}B_0 + \tfrac12B_1 + B_2\right) \; = \; \tfrac16\pi^2 i \\ J_4 & = & 32\pi^4 i \left( \tfrac{1}{256}B_0 + \tfrac{1}{16}B_1 + \tfrac38B_2 + B_3 + B_4\right) \; = \; \tfrac{7}{120}\pi^4i \end{array} and so the desired integral is J 1 + J 2 + J 4 = π + i ( 1 6 π 2 + 7 120 π 4 ) J_1 + J_2 + J_4 \; = \; \pi + i\left( \tfrac16\pi^2 + \tfrac{7}{120}\pi^4\right) making the answer equal to 1 + 2 + 6 + 7 + 4 + 120 = 140 1 + 2 + 6 + 7 + 4 + 120 \,=\, 140 .

pretty amazing :)

Aman Rajput - 5 years, 5 months ago

Log in to reply

You should create 100 accounts just to upvote this solution!

Pi Han Goh - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...