Hot Integral - 26

Calculus Level 3

Let J \mathcal{J} is the expected distance of a random point from any vertex of the unit tesseract. Define

I = 0 1 tanh 1 ( 1 3 + x 2 ) 1 + x 2 d x \large \large \mathcal{I}=\int\limits_{0}^{1} \frac{\tanh^{-1}\left(\frac{1}{\sqrt{3+x^2}}\right)}{1+x^2} dx

We have

I 5 J = A B tan 1 C + π D log ( E + F ) G H π K L log M N , \displaystyle \mathcal{I}-5\mathcal{J} = A\sqrt{B}\tan^{-1} \sqrt{C}+\frac{\pi}{D}\log(E+\sqrt{F})-\frac{G}{H}\pi\sqrt{K}-L\log M -N,

where G , H G,H are coprime numbers, F F is a prime number and K K is square free.

Calculate A + B + C + D + E + F + G + H + K + L + M + N A+B+C+D+E+F+G+H+K+L+M+N .


The answer is 41.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Aug 14, 2016

Someone has solved this!

In the notation of the seminal paper on the topic of box integrals, the expected distance J \mathcal{J} from any vertex of the unit tesseract (four-dimensional cube) is J = B 4 ( 1 ) \mathcal{J} = B_4(1) , and J = B 4 ( 1 ) = [ t ] c 2 5 + 7 20 π 2 1 20 π ln ( 1 + 2 ) + ln 3 7 5 2 tan 1 2 + 1 10 K 0 \mathcal{J} = B_4(1) \; = \; \begin{array}{c}[t]{c}\tfrac25 + \tfrac{7}{20}\pi\sqrt{2} - \tfrac{1}{20}\pi\ln(1 + \sqrt{2})\\ + \ln3 - \tfrac75\sqrt{2}\tan^{-1}\sqrt{2} + \tfrac1{10}\mathcal{K}_0\end{array} where K 0 = 2 0 1 tanh 1 1 3 + y 2 1 + y 2 d y = 2 I \mathcal{K}_0 = 2\int_0^1 \frac{\tanh^{-1}\frac{1}{\sqrt{3+y^2}}}{1+y^2}\,dy \; = \; 2\mathcal{I} (although the factor of 2 2 is dropped in later papers). Thus I 5 J = 7 2 tan 1 2 + 1 4 π ln ( 1 + 2 ) 7 4 π 2 5 ln 3 2 \mathcal{I} - 5\mathcal{J} = 7\sqrt{2}\tan^{-1}\sqrt{2} + \tfrac14\pi\ln(1+\sqrt{2}) - \tfrac74\pi\sqrt{2} - 5\ln3 - 2 which makes the answer 7 + 2 + 2 + 4 + 1 + 2 + 7 + 4 + 2 + 5 + 3 + 2 = 41 7+2+2+4+1+2+7+4+2+5+3+2 = \boxed{41} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...