Hot integral

Calculus Level 4

Let cos ( 2016 x ) sin 2014 x d x = f ( x ) + C \displaystyle \int \cos(2016x) \sin^{2014} x \, dx = f(x) + C , where C C is the constant of integration and f ( 0 ) = 0 f(0)=0 . Evaluate π 2 π f ( x ) d x \displaystyle \int_\pi ^{2\pi} f(x) \, dx .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let n = 2014 n=2014 . Then we have:

I = cos ( ( n + 2 ) x ) sin n x d x = ( cos ( ( n + 1 ) x ) cos x sin ( ( n + 1 ) x ) sin x ) sin n x d x = ( cos ( ( n + 1 ) x ) sin n cos x sin ( ( n + 1 ) x ) sin n + 1 x ) d x Note that d d x sin n + 1 x cos ( ( n + 1 ) x ) = sin n + 1 x cos ( ( n + 1 ) x ) n + 1 + C = ( n + 1 ) sin n x cos x cos ( ( n + 1 ) x ) ( n + 1 ) sin n + 1 x sin ( ( n + 1 ) x ) \begin{aligned} I & = \int \cos ((n+2)x)\sin^n x \ dx \\ & = \int (\cos ((n+1)x)\cos x - \sin ((n+1)x) \sin x)\sin^nx \ dx \\ & = \int \left(\cos ((n+1)x)\sin^n \cos x - \sin ((n+1)x)\sin^{n+1}x\right) dx & \small \color{#3D99F6} \text{Note that }\frac d{dx} \sin^{n+1}x \cos((n+1)x) \\ & = \frac {\sin^{n+1}x \cos((n+1)x)}{n+1} + C & \small \color{#3D99F6} = (n+1)\sin^n x \cos x \cos((n+1)x) - (n+1)\sin^{n+1}x \sin((n+1)x) \end{aligned}

Therefore,

π 2 π f ( x ) d x = π 2 π sin n + 1 x cos ( ( n + 1 ) x ) n + 1 d x Since f ( 3 π 2 x ) = f ( x 3 π 2 ) = 0 \begin{aligned} \int_\pi^{2\pi} f(x) \ dx & = \int_\pi^{2\pi} \frac {\sin^{n+1}x \cos((n+1)x)}{n+1} \ dx & & \small \color{#3D99F6} \text{Since }f \left(\frac {3\pi}2 - x\right) = - f \left(x-\frac {3\pi}2\right) \\ & = \boxed{0} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...