Hot Integral - 31 (You missed these ?)

Calculus Level 5

Evaluate the following integral 201 8 2 201 9 2 ( x d x 1 ) \large \int\limits_{2018^2}^{2019^2}\left(x^{dx}-1\right) If the value of above integral is k k , enter your answer as k \lfloor k \rfloor .

Caution: If you think the question is irrelevant as there is no d x dx after the integrand, so question is absurd, then enter your answer as 999 999


The answer is 61444.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aman Rajput
Apr 22, 2019

It can be rewritten as 201 8 2 201 9 2 ( x d x 1 ) d x d x \displaystyle \int\limits_{2018^2}^{2019^2}\left( x^{dx}-1\right) \frac{dx}{dx} = 201 8 2 201 9 2 ( x d x 1 d x ) d x =\displaystyle \int\limits_{2018^2}^{2019^2}\left( \frac{x^{dx}-1}{dx}\right)dx = 201 8 2 201 9 2 ( lim Δ x 0 x Δ x 1 Δ x ) d x =\displaystyle \int\limits_{2018^2}^{2019^2}\left(\lim_{\Delta x \to 0} \frac{x^{\Delta x}-1}{\Delta x}\right)dx = 201 8 2 201 9 2 ( ln x ) d x =\displaystyle \int\limits_{2018^2}^{2019^2}(\ln x) dx

Now you know ;)

Anirudh Sreekumar
Apr 22, 2019

k = 2018 2 2019 2 ( x d x 1 ) = 2018 2 2019 2 ( e d x l n ( x ) 1 ) as d x 0 e = ( 1 + d x ) 1 d x Substituting for e k = 2018 2 2019 2 ( ( 1 + d x ) 1 d x ) d x l n ( x ) 1 = 2018 2 2019 2 ( 1 + d x ) l n ( x ) 1 as x varies from 2018 2 to 2019 2 ln ( x ) varies from 15.219724 4 to 15.220715 2 if 0 < t < < < < 1 and  n is small ( 1 + t ) n 1 + n t using the above approximation k 2018 2 2019 2 ( 1 + l n ( x ) d x ) 1 2018 2 2019 2 l n ( x ) d x x ( l n ( x ) 1 ) 2018 2 2019 2 k 61444.02774 0 k = 61444 \begin{aligned}k&={\large\int}_{{2018}^2}^{{2019}^2}(x^{dx}-1)\\ &={\large\int}_{{2018}^2}^{{2019}^2}(e^{dxln(x)}-1)\\\\ &\text{as } dx\to0\\\\ e&=(1+dx)^{\tfrac{1}{dx}}\\\\ &\text{Substituting for e}\\\\ k&={\large\int}_{{2018}^2}^{{2019}^2}\left((1+dx)^{\tfrac{1}{dx}}\right)^{dxln(x)}-1\\ &={\large\int}_{{2018}^2}^{{2019}^2}(1+dx)^{ln(x)}-1\\\\ &\text{as } x\text{ varies from } { { 2018}^2}\text{ to }{{2019}^2}\\ &\ln(x) \text{ varies from } {15.2197244_\cdots} \text{ to } {15.2207152_\cdots}\\ &\text{ if } 0<t<<<<1 \text{ and } \text{ n is small}\\ &(1+t)^n\approx 1+nt \\ &\text{using the above approximation}\\ k&\approx{\large\int}_{{2018}^2}^{{2019}^2}(1+ln(x)dx)-1\\ &\approx{\large\int}_{{2018}^2}^{{2019}^2}ln(x)dx\\ &\approx x(ln(x)-1)\biggr|_{{2018}^2}^{{2019}^2}\\\\ k&\approx{61444.027740_\cdots}\\ \lfloor{k}\rfloor&=\color{#EC7300}\boxed{\color{#333333}61444}\end{aligned}

I'm a bit skeptical about using the second approximation, any help in cleaning up the solution will be much appreciated..

Anirudh Sreekumar - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...