Let
f ( x ) = 0 ∫ 1 1 − t 2 1 − x t 2 d t
Then, the following integral can be expressed as :
∫ x 3 f ( 2 0 1 5 x 2 ) d x = − b z c a [ π { d z f 4 F 3 ( g , h , k i , k j ; l , m , m ; n z o ) − p z q lo g ( r ) + s z t lo g ( − u z v ) + w } ] + constant
Evaluate a + b + c + d + f + g + h + i + j + k + l + m + n + o + p + q + r + s + t + u + v + w = ?
Details and Assumptions
1) a , b , c , d , f , g , h , i , j , k , l , m , n , o , p , q , r , s , t , u , v , w are all positive integers.
2) 4 F 3 ( . , . , . , . ; . , . , . ; . ) is a Hypergeometric function .
3) Everything is in the simplest form and r is square free.
■ This is a part of Hot Integrals
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
With the substitution t = sin θ , the function f ( x ) becomes f ( x ) = ∫ 0 2 1 π 1 − x sin 2 θ d θ = E ( x ) , the complete elliptic integral of the second kind. Thus ∫ x 3 f ( 2 0 1 5 x 2 ) d x = ∫ x 3 E ( 2 0 1 5 x 2 ) d x = 8 x 2 1 G 3 , 3 2 , 2 ( − 2 0 1 5 x 2 ∣ 0 , 1 , 0 2 1 , 2 3 , 2 ) using the Meijer G function. This can be expressed as: − 2 5 6 x 2 π [ 1 2 1 8 0 6 7 5 x 4 4 F 3 ( { 1 , 1 , 2 3 , 2 5 } ; { 2 , 3 , 3 } ; 2 0 1 5 x 2 ) − 1 2 8 9 6 0 x 2 ln 2 + 3 2 2 4 0 x 2 lo g ( − 2 0 1 5 x 2 ) + 6 4 ] making the answer 1 + 2 5 6 + 2 + 1 2 1 8 0 6 7 5 + 4 + 1 + 1 + 3 + 5 + 2 + 2 + 3 + 2 0 1 5 + 2 + 1 2 8 9 6 0 + 2 + 2 + 3 2 2 4 0 + 2 + 2 0 1 5 + 2 + 6 4 or 1 2 3 4 6 2 5 9 .
Incidentally, there is a typo in the question. The variable x has morphed into the variable z ...