Hot Integral-5

Calculus Level 5

Let

f ( x ) = 0 1 1 x t 2 1 t 2 d t \displaystyle f(x)=\int\limits_0^1 \frac{\sqrt{1-xt^2}}{\sqrt{1-t^2}}dt

Then, the following integral can be expressed as :

f ( 2015 x 2 ) x 3 d x = a b z c [ π { d z f 4 F 3 ( g , h , i k , j k ; l , m , m ; n z o ) p z q log ( r ) + s z t log ( u z v ) + w } ] \displaystyle \int \frac{f(2015x^2)}{x^3}dx = -\frac{a}{bz^c}[\pi \left\{dz^f \;_4F_3(g,h,\frac{i}{k},\frac{j}{k};l,m,m;nz^o) -pz^q \log(r) + sz^t\log(-uz^v) + w\right\}] + constant

Evaluate a + b + c + d + f + g + h + i + j + k + l + m + n + o + p + q + r + s + t + u + v + w = ? a+b+c+d+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w = ?

Details and Assumptions \textbf{Details and Assumptions}

1) a , b , c , d , f , g , h , i , j , k , l , m , n , o , p , q , r , s , t , u , v , w a,b,c,d,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w are all positive integers.

2) 4 F 3 ( . , . , . , . ; . , . , . ; . ) _4F_3(.,.,.,.;.,.,.;.) is a Hypergeometric function \textbf{Hypergeometric function} .

3) Everything is in the simplest form \textbf{simplest form} and r r is square free.

\blacksquare This is a part of Hot Integrals


The answer is 12346259.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 11, 2016

With the substitution t = sin θ t = \sin\theta , the function f ( x ) f(x) becomes f ( x ) = 0 1 2 π 1 x sin 2 θ d θ = E ( x ) , f(x) \; = \; \int_0^{\frac12\pi} \sqrt{1 - x\sin^2\theta}\,d\theta \; = \; E(x) \;, the complete elliptic integral of the second kind. Thus f ( 2015 x 2 ) x 3 d x = E ( 2015 x 2 ) x 3 d x = 1 8 x 2 G 3 , 3 2 , 2 ( 2015 x 2 1 2 , 3 2 , 2 0 , 1 , 0 ) \int \frac{f(2015x^2)}{x^3} \,dx \; = \; \int \frac{E(2015 x^2)}{x^3}\,dx \; = \; \frac{1}{8x^2}G^{2,2}_{3,3}\left(-2015x^2 {\Huge|}{{\frac12,\frac32,2} \atop {0,1,0}}\right) using the Meijer G function. This can be expressed as: π 256 x 2 [ 12180675 x 4 4 F 3 ( { 1 , 1 , 3 2 , 5 2 } ; { 2 , 3 , 3 } ; 2015 x 2 ) 128960 x 2 ln 2 + 32240 x 2 log ( 2015 x 2 ) + 64 ] -\frac{\pi}{256x^2}\left[ 12180675x^4 {}_4F_3\big(\{1,1,\tfrac32,\tfrac52\};\{2,3,3\};2015x^2\big) - 128960 x^2 \ln 2 + 32240 x^2 \log(-2015x^2) + 64\right] making the answer 1 + 256 + 2 + 12180675 + 4 + 1 + 1 + 3 + 5 + 2 + 2 + 3 + 2015 + 2 + 128960 + 2 + 2 + 32240 + 2 + 2015 + 2 + 64 {\small 1 + 256 + 2 + 12180675 + 4 + 1 + 1 + 3 + 5 + 2 + 2 + 3 + 2015 + 2 + 128960 + 2 + 2 + 32240 + 2 + 2015 + 2 + 64} or 12346259 12346259 .

Incidentally, there is a typo in the question. The variable x x has morphed into the variable z z ...

Right. :) :)

Aman Rajput - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...