Hot Integral - 6

Calculus Level 5

I n ( x ) = 2 n π ( x + i t ) n e t 2 d t \qquad \qquad\displaystyle I_n(x) = \frac{2^n}{\sqrt{\pi}}\int\limits_{-\infty}^{\infty}\frac{(x+it)^n}{e^{t^2}} dt

Then, the following summation can be expressed as:

n = 0 I n ( x ) 2 n n 2 ! = a + b x a c d e p a x q \displaystyle \sum_{n=0}^{\infty} \frac{I_n(x)2^n}{\lfloor \frac{n}{2}\rfloor !} = \frac{a+bx}{a^{\frac{c}{d}}}e^{\frac{p}{a}x^q}

Calculate a + b + c + d + p + q a+b+c+d+p+q .

Details and Assumptions

1) i = 1 i=\sqrt{-1}

2) a , b , c , d , p , q a,b,c,d,p,q are positive integers.

3) gcd ( c , d ) = gcd ( p , a ) = 1 \gcd(c,d)=\gcd(p,a)=1

4)Sign ! ! indicates factorial. For e.g. 3 ! = 3 × 2 × 1 3! = 3 \times 2 \times 1

5) . \lfloor . \rfloor represents the floor function.

This is a part of Hot Integrals


The answer is 44.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kartik Sharma
Aug 12, 2015

Again a nice problem!

I'll straightaway put the integral into the sum. That is a valid step of course.

n = 0 2 n π ( x + i t ) n e t 2 d t 2 n n 2 ! \displaystyle \sum_{n=0}^{\infty}{\frac{\displaystyle \frac{2^n}{\sqrt{\pi}}\int\limits_{-\infty}^{\infty}\frac{(x+it)^n}{e^{t^2}} dt \quad {2}^{n}}{\left \lfloor \frac{n}{2} \right \rfloor !}}

Now, we will sum under integral sign i.e. take the summation under the integral sign. That is again valid as integral is not taken w.r.t. n n .

1 π e t 2 n = 0 ( 4 ( x + i t ) ) n n 2 ! d t \displaystyle \frac{1}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty}{{e}^{-{t}^{2}} \sum_{n=0}^{\infty}{\frac{{\left(4(x+it)\right)}^{n}}{\left \lfloor \frac{n}{2} \right \rfloor !}} \quad dt}

1 π e t 2 ( 4 ( x + i t ) + 1 ) e ( 4 x + 4 i t ) 2 d t \displaystyle \frac{1}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty}{{e}^{-{t}^{2}} \left(4(x+it)+1\right){e}^{{\left(4x+4it\right)}^{2}} dt}

The above is true because -

n = 0 a n n 2 ! = n = 0 a 2 n + a 2 n + 1 n ! = ( a + 1 ) e a 2 \displaystyle \sum_{n=0}^{\infty}{\frac{{a}^{n}}{\left \lfloor \frac{n}{2} \right \rfloor !}} = \sum_{n=0}^{\infty}{\frac{{a}^{2n} + {a}^{2n+1}}{n!}} = (a+1){e}^{{a}^{2}}

Hence, we will proceed with the integral now

1 π ( 4 ( x + i t ) + 1 ) e 17 t 2 + 32 x i t + 16 x 2 d t \displaystyle \frac{1}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty}{ \left(4(x+it)+1\right){e}^{-17{t}^{2}+ 32xit + 16{x}^{2}} dt}

For computing this integral, we will first find some general integrals.

1. e a x 2 + b x + c d x = π a e b 2 4 a + c \displaystyle 1. \quad \int\limits_{-\infty}^{\infty}{{e}^{-a{x}^{2}+ bx + c} dx} = \displaystyle \sqrt{\frac{\pi}{a}} {e}^{\frac{{b}^{2}}{4a}+c}

Proof: e a x 2 + b x + c d x \displaystyle \text{Proof:} \quad \int\limits_{-\infty}^{\infty}{{e}^{-a{x}^{2}+ bx + c} dx}

= e b 2 4 a + c e a x 2 + b x b 2 4 a d x \displaystyle = {e}^{\frac{{b}^{2}}{4a}+c} \int\limits_{-\infty}^{\infty}{{e}^{-a{x}^{2}+ bx -\frac{{b}^{2}}{4a}} dx}

= e b 2 4 a + c e ( a x b 2 a ) 2 d x \displaystyle = {e}^{\frac{{b}^{2}}{4a}+c} \int\limits_{-\infty}^{\infty}{{e}^{-{\left(\sqrt{a}x - \frac{b}{2\sqrt{a}}\right)}^{2}} dx}

Substituting u = a x b 2 a u = \sqrt{a}x - \frac{b}{2\sqrt{a}} and using Gaussian integral,

= π a e b 2 4 a + c \displaystyle = \sqrt{\frac{\pi}{a}} {e}^{\frac{{b}^{2}}{4a}+c}

2. x e a x 2 + b x + c d x = b e b 2 4 a + c 2 a π a \displaystyle 2. \quad \int\limits_{-\infty}^{\infty}{x{e}^{-a{x}^{2}+ bx + c} dx} = \frac{b{e}^{\frac{{b}^{2}}{4a}+c}}{2a}\sqrt{\frac{\pi}{a}}

Proof: \displaystyle \text{Proof:}

Moving ahead as we did in the previous proof (using quadratic substitution, u- substitution etc.), we'd simply get

e b 2 4 a a ( u + b 2 a ) e u 2 d u \displaystyle \frac{{e}^{\frac{{b}^{2}}{4a}}}{a} \int\limits_{-\infty}^{\infty}{\left(u+\frac{b}{2\sqrt{a}}\right){e}^{-{u}^{2}} du}

e b 2 4 a a ( u e u 2 d u + b 2 a e u 2 d u ) \displaystyle \frac{{e}^{\frac{{b}^{2}}{4a}}}{a} \left(\int\limits_{-\infty}^{\infty}{u{e}^{-{u}^{2}} du} + \frac{b}{2\sqrt{a}} \int\limits_{-\infty}^{\infty}{{e}^{-{u}^{2}} du}\right)

Now, the first integral will get equal to 0 0 since it is an odd function. And we are left with only the 2nd integral which is purely Gaussian. So, we'll get

b e b 2 4 a + c 2 a π a \displaystyle \frac{b{e}^{\frac{{b}^{2}}{4a}+c}}{2a}\sqrt{\frac{\pi}{a}}

That's all what we require to compute our integral. Let's get back to business.

This was our integral -

1 π ( 4 ( x + i t ) + 1 ) e 17 t 2 + 32 x i t + 16 x 2 d t \displaystyle \frac{1}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty}{ \left(4(x+it)+1\right){e}^{-17{t}^{2}+ 32xit + 16{x}^{2}} dt}

Manipulating it,

4 x + 1 π e 17 t 2 + 32 x i t + 16 x 2 d t + 4 i π t e 17 t 2 + 32 x i t + 16 x 2 d t \displaystyle \frac{4x + 1}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty}{{e}^{-17{t}^{2}+ 32xit + 16{x}^{2}} dt} + \frac{4i}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty}{t{e}^{-17{t}^{2}+ 32xit + 16{x}^{2}} dt}

Now, using the results we derived above,

= ( 4 x + 1 ) e 32 2 x 2 4 × 17 + 16 x 2 17 64 x e 32 2 x 2 4 × 17 + 16 x 2 17 17 \displaystyle = \frac{(4x+1){e}^{-\frac{{32}^{2}{x}^{2}}{4 \times 17} + 16{x}^{2}}}{\sqrt{17}} - \frac{64x{e}^{-\frac{{32}^{2}{x}^{2}}{4 \times 17} + 16{x}^{2}}}{17\sqrt{17}}

which on simplification gives -

( 4 x + 17 ) e 16 17 x 2 17 3 2 \displaystyle \boxed{\frac{\left(4x+17\right){e}^{\frac{16}{17}{x}^{2}}}{{17}^{\frac{3}{2}}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...