I
n
(
x
)
=
π
2
n
+
1
e
x
2
0
∫
∞
e
t
2
t
n
cos
(
2
x
t
−
2
n
π
)
d
t
Then , the following integral :
− ∞ ∫ ∞ e − ( 1 − t ) 2 I 2 ( t ) d t = k
Calculate ⌊ k ⌋ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note that you have to check that the red integral is absolutely convergent, before you can conclude that it is not undefined, and hence equal to 0. E.g. \int_{-\infty}^{\infty} \frac{1}[x} \, dx is undefined.
Challenge Master: Edited!
Mine involved Mellin transform, Gamma function and much more fancier names than yours. Great solution! Should I post mine? I don't think so after yours.
Log in to reply
It's great to learn other approaches , post your solution :)
you should post yours... my vote is ready .. and waiting for that
Log in to reply
Yes and my vote also !
And Aman, don't you have an approach involving the Hermite polynomials? Post it please I don't know anything about them..
The defining integral for I n is a standard one! We have I n ( x ) = H n ( x ) , the n th Hermite polynomial. It is easy to show that the generating function of the I n is n = 0 ∑ ∞ I n ( x ) n ! t n = e 2 x t − t 2 , which is the same as the generating function of the Hermite polynomials.
The desired integral is thus ∫ R e − ( t − 1 ) 2 H 2 ( t ) d t = = = = ∫ R e − t 2 H 2 ( t + 1 ) d t = ∫ R e − t 2 ( 4 ( t + 1 ) 2 − 2 ) d t ∫ R e − t 2 ( H 2 ( t ) + 4 H 1 ( t ) + 4 H 0 ( t ) ) d t ∫ R e − t 2 ( H 2 ( t ) + 4 H 1 ( t ) + 4 H 0 ( t ) ) H 0 ( t ) d t 4 ∫ R e − t 2 H 0 ( t ) 2 d t = 4 π using the orthogonality properties of the Hermite polynomials.
Nice .. :)
I 2 ( x ) = − π 8 e x 2 0 ∫ ∞ t 2 c o s ( 2 x t ) e − t 2 d t
I 2 ( x ) = − π 8 e x 2 0 ∫ ∞ t 2 e − t 2 k = 0 ∑ ∞ ( 2 k ) ! ( − 1 ) k ( 2 x t ) 2 k d t
I 2 ( x ) = − π 8 e x 2 k = 0 ∑ ∞ ( 2 k ) ! ( − 1 ) k ( 2 x ) 2 k 0 ∫ ∞ t 2 + 2 k e − t 2 d t
Using U-substitution and Gamma function's definition, we can write it as -
I 2 ( x ) = − π 8 e x 2 k = 0 ∑ ∞ ( 2 k ) ! ( − 1 ) k ( 2 x ) 2 k Γ ( k + 1 + 2 1 )
Using Gamma function property,
= − π 8 e x 2 k = 0 ∑ ∞ ( 2 k ) ! ( − 1 ) k ( 2 x ) 2 k 2 2 k + 2 ( k + 1 ) ! ( 2 k + 2 ) ! π
Simplifying,
= − 2 e x 2 k = 0 ∑ ∞ k ! ( − x 2 ) k ( 2 k + 1 )
Using the Taylor series of e x and then differentiation, one can get
= − 2 e x 2 ( − e − x 2 ( 2 x 2 − 1 ) )
= 4 x 2 − 2
Then, the concluding integral becomes
∫ − ∞ ∞ ( 4 t 2 − 2 ) e − ( 1 − t ) 2 d t
whose computation will be the same as that of Hasan.
A general integral I n ( x ) can thus be computed similarly.
Problem Loading...
Note Loading...
Set Loading...
I solved it using the Gaussian Integral .
First find the closed form of I 2 ( x ) :
I 2 ( x ) = − π 8 e x 2 ∫ 0 ∞ t 2 cos ( 2 x t ) e − t 2 d t
= − π 4 e x 2 ∫ − ∞ ∞ t 2 cos ( 2 x t ) e − t 2 d t
= − ℜ π 4 e x 2 ∫ − ∞ ∞ t 2 e 2 x t i e − t 2 d t
= − ℜ π 4 e x 2 ∫ − ∞ ∞ t 2 e 2 x t i e − t 2 d t
= − ℜ π 4 ∫ − ∞ ∞ t 2 e x 2 e 2 x t i e − t 2 d t
= − ℜ π 4 ∫ − ∞ ∞ t 2 e − ( t − i x ) 2 d t
= t → ( t + i x ) − ℜ π 4 ∫ − ∞ ∞ ( t + i x ) 2 e − t 2 d t
= − ℜ π 4 ( ∫ − ∞ ∞ t 2 e − t 2 d t + 2 i x ∫ − ∞ ∞ t e − t 2 d t + ( i x ) 2 ∫ − ∞ ∞ e − t 2 d t )
-The Blue Integral:
Use Integration by parts with u = t , d v = t e − t 2 d t :
= ( t ) ( − 2 1 e − t 2 ) ∣ − ∞ ∞ + 2 1 ∫ − ∞ ∞ e − t 2 d t
= 2 π
-The Red Integral :
I will check its absolute convergence :
∫ − ∞ ∞ ∣ t e − t 2 ∣ d t = 2 ∫ 0 ∞ t e − t 2 d t
= t → t ∫ 0 ∞ e − t d t = 1
And hence it is absolutely convergent.
We have an odd function and opposite integration limits :
= 0
-The Green Integral:
It is Simply the Gaussian Integral:
= π
Hence:
I 2 ( x ) = − ℜ π 4 ( 2 π + 2 i x ( 0 ) + ( i x ) 2 π ) = 4 x 2 − 2
Now solve the desired integral:
k = ∫ − ∞ ∞ e − ( t − 1 ) 2 I 2 ( t ) d t = ∫ − ∞ ∞ ( 4 t 2 − 2 ) e − ( t − 1 ) 2 d t
= t → ( t + 1 ) ∫ − ∞ ∞ ( 4 t 2 + 8 t + 2 ) e − t 2 d t
= 4 ∫ − ∞ ∞ t 2 e − t 2 d t + 8 ∫ − ∞ ∞ t e − t 2 d t + 2 ∫ − ∞ ∞ e − t 2 d t
These integrals were solved above, hence we have:
k = 4 ( 2 π ) + 8 ( 0 ) + 2 ( π ) = 4 π
= > ⌊ k ⌋ = ⌊ 4 π ⌋ = ⌊ 7 . 0 8 9 8 2 ⌋ = 7