Hot Integral - 9

Calculus Level 5

0 { f ( x ) } e x y d x = A y B ( C y D e y E F ) \large \displaystyle \int_0^\infty \dfrac{\{ f(x) \} }{e^{xy}} \, dx = \dfrac A{y^B} \left( C - \dfrac {y^D}{e^{y^E} - F }\right)

For f ( x ) = x x 1 2 f(x) = x - \left \lfloor x -\frac12\right\rceil , the equation above is true for constant positive integers A , B , C , D , E A,B,C,D,E and F F . Calculate the value of A + B + C + D + E + F A+B+C+D+E+F .

Clarifications :

  • \lfloor \cdot \rceil represents the nint function (nearest integer function).

  • { } \{ \cdot \} represents the fractional part function.

This is a part of Hot Integrals .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Maggie Miller
Aug 9, 2015

Since subtracting an integer doesn't change fractional part, { f ( x ) } = { x } \{f(x)\}=\{x\} . Then

0 { f ( x ) } e x y d x = n = 0 0 1 x e y ( x + n ) d x = n = 0 ( x y e y ( x + n ) 1 y 2 e y ( x + n ) ) 0 1 \displaystyle\int_0^{\infty}\frac{\{f(x)\}}{e^{xy}}dx=\sum_{n=0}^{\infty}\int_0^1\frac{x}{e^{y(x+n)}}dx=\sum_{n=0}^{\infty}\left(-\frac{x}{ye^{y(x+n)}}-\frac{1}{y^2e^{y(x+n)}}\right)\bigg|_0^1

= 1 y 2 n = 0 ( 1 e y ( n + 1 ) + 1 e y n y e y ( n + 1 ) ) \displaystyle=\frac{1}{y^2}\sum_{n=0}^{\infty}\left(-\frac{1}{e^{y(n+1)}}+\frac{1}{e^{yn}}-\frac{y}{e^{y(n+1)}}\right) .

Note the first two parts of each term telescope, so we simplify to

1 y 2 ( 1 e 0 y e y n = 0 e y n ) = 1 y 2 ( 1 y e y e y e y 1 ) = 1 y 2 ( 1 y e y 1 ) \displaystyle\frac{1}{y^2}\left(\frac{1}{e^0}-\frac{y}{e^y}\sum_{n=0}^{\infty}e^{-yn}\right)=\frac{1}{y^2}\left(1-\frac{y}{e^y}\frac{e^y}{e^y-1}\right)=\frac{1}{y^2}\left(1-\frac{y}{e^y-1}\right) .

Then A = 1 , B = 2 , C = 1 , D = 1 , E = 1 , F = 1 , A=1,B=2,C=1,D=1,E=1,F=1, so the answer is 7 \boxed{7} .

Did the same! @Aman Raimann Love your problems!

Kartik Sharma - 5 years, 10 months ago

Log in to reply

thanks dudde....

Aman Rajput - 5 years, 10 months ago

ya by mistake i put only D

nice one :) @Maggie Miller try my more problems

Aman Rajput - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...