∫ 0 ∞ e x y { f ( x ) } d x = y B A ( C − e y E − F y D )
For f ( x ) = x − ⌊ x − 2 1 ⌉ , the equation above is true for constant positive integers A , B , C , D , E and F . Calculate the value of A + B + C + D + E + F .
Clarifications :
⌊ ⋅ ⌉ represents the nint function (nearest integer function).
{ ⋅ } represents the fractional part function.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Did the same! @Aman Raimann Love your problems!
ya by mistake i put only D
nice one :) @Maggie Miller try my more problems
Problem Loading...
Note Loading...
Set Loading...
Since subtracting an integer doesn't change fractional part, { f ( x ) } = { x } . Then
∫ 0 ∞ e x y { f ( x ) } d x = n = 0 ∑ ∞ ∫ 0 1 e y ( x + n ) x d x = n = 0 ∑ ∞ ( − y e y ( x + n ) x − y 2 e y ( x + n ) 1 ) ∣ ∣ ∣ ∣ 0 1
= y 2 1 n = 0 ∑ ∞ ( − e y ( n + 1 ) 1 + e y n 1 − e y ( n + 1 ) y ) .
Note the first two parts of each term telescope, so we simplify to
y 2 1 ( e 0 1 − e y y n = 0 ∑ ∞ e − y n ) = y 2 1 ( 1 − e y y e y − 1 e y ) = y 2 1 ( 1 − e y − 1 y ) .
Then A = 1 , B = 2 , C = 1 , D = 1 , E = 1 , F = 1 , so the answer is 7 .