The equation above holds true for positive coprime integers and . Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The first integral is easy: ∫ 0 1 x ln x ln ( 1 − x ) d x = − n ≥ 1 ∑ n 1 ∫ 0 1 ln x x n − 1 d x = n ≥ 1 ∑ n 3 1 = ζ ( 3 ) A double integration by parts shows that ∫ 0 π u ( π − u ) e − ( 2 k + 1 ) u i d u = − ( 2 k + 1 ) 3 4 i k ∈ N ∪ { 0 } Thus ∫ 0 π sin u u ( π − u ) ( 1 − e − 2 K u i ) d u = 2 i k = 0 ∑ K − 1 ∫ 0 π u ( π − u ) e − ( 2 k + 1 ) u i d u = 8 k = 0 ∑ K − 1 ( 2 k + 1 ) 3 1 for all K ≥ 0 , and since sin u u ( π − u ) is Lebesgue integrable over ( 0 , π ) , we deduce, on letting K → ∞ , that ∫ 0 π sin u u ( π − u ) d u = 8 k ≥ 0 ∑ ( 2 k + 1 ) 3 1 = 8 ( 1 − 8 1 ) ζ ( 3 ) = 7 ζ ( 3 ) Then the successive substitutions y = e x , y = tan t , u = 2 t give ∫ − ∞ ∞ tan − 1 ( e t ) tan − 1 ( e − t ) d t = ∫ 0 ∞ y tan − 1 ( y ) tan − 1 ( y − 1 ) d y = ∫ 0 2 1 π sin t cos t t ( 2 1 π − t ) d t = 4 1 ∫ 0 π sin u u ( π − u ) d u = 4 7 ζ ( 3 ) so we deduce that A = 7 , B = 4 , and hence A + B = 1 1 .