∫ 0 sin − 1 ( 1 / 3 ) 2 cos ( 2 x ) − 1 cos x d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great Brilliant freaks think alike....have a good one, Chew-Seong!
Let us rewrite the above integrand as the following:
2 cos ( 2 x ) − 1 cos ( x ) = 2 ( 2 cos 2 ( x ) − 1 ) − 1 cos ( x ) = 4 cos 2 ( x ) − 3 cos ( x ) = 4 ( 1 − sin 2 ( x ) ) − 3 cos ( x ) = 1 − 4 sin 2 ( x ) cos ( x ) = 2 1 ⋅ [ 1 + 2 sin ( x ) 1 + 1 − 2 sin ( x ) 1 ] ⋅ cos ( x ) .
Let u = sin ( x ) , d u = cos ( x ) d x , 0 ≤ u ≤ 3 1 , which now results in:
2 1 ∫ 0 3 1 1 + 2 u 1 + 1 − 2 u 1 d u ;
or 4 1 ⋅ [ ln ( 1 + 2 u ) − ln ( 1 − 2 u ) ] ∣ 0 3 1 ;
or 4 1 ln ( 5 ) .
Problem Loading...
Note Loading...
Set Loading...
Similar solution as @Tom Engelsman
I = ∫ 0 sin − 1 3 1 2 cos ( 2 x ) − 1 cos x d x = ∫ 0 sin − 1 3 1 2 ( 1 − 2 sin 2 x ) − 1 cos x d x = ∫ 0 sin − 1 3 1 1 − 4 sin 2 x cos x d x = ∫ 0 3 1 1 − 4 u 2 1 d u = ∫ 0 3 1 2 1 ( 1 − 2 u 1 + 1 + 2 u 1 ) d u = 2 1 [ − 2 ln ( 1 − 2 u ) + 2 ln ( 1 + 2 u ) ] 0 3 1 = 4 1 ln ( 1 − 2 u 1 + 2 u ) ∣ ∣ ∣ ∣ 0 3 1 = 4 ln 5 ≈ 0 . 4 0 2 Let u = sin x ⟹ d u = cos x d x