Hot integration 112

Calculus Level 2

0 sin 1 ( 1 / 3 ) cos x 2 cos ( 2 x ) 1 d x = ? \int_0^{\sin^{-1}(1/3)} \dfrac{\cos x}{2\cos(2x) - 1} \, dx = \, ?


The answer is 0.4024.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Similar solution as @Tom Engelsman

I = 0 sin 1 1 3 cos x 2 cos ( 2 x ) 1 d x = 0 sin 1 1 3 cos x 2 ( 1 2 sin 2 x ) 1 d x = 0 sin 1 1 3 cos x 1 4 sin 2 x d x Let u = sin x d u = cos x d x = 0 1 3 1 1 4 u 2 d u = 0 1 3 1 2 ( 1 1 2 u + 1 1 + 2 u ) d u = 1 2 [ ln ( 1 2 u ) 2 + ln ( 1 + 2 u ) 2 ] 0 1 3 = 1 4 ln ( 1 + 2 u 1 2 u ) 0 1 3 = ln 5 4 0.402 \begin{aligned} I & = \int_0^{\sin^{-1}\frac 13} \frac {\cos x}{2\cos (2x)-1} dx \\ & = \int_0^{\sin^{-1}\frac 13} \frac {\cos x}{2(1-2\sin^2 x)-1} dx \\ & = \int_0^{\sin^{-1}\frac 13} \frac {\cos x}{1-4\sin^2 x} dx & \small \blue{\text{Let }u = \sin x \implies du = \cos x \ dx} \\ & = \int_0^\frac 13 \frac 1{1-4u^2} du \\ & = \int_0^\frac 13 \frac 12 \left(\frac 1{1-2u} + \frac 1{1+2u} \right) du \\ & = \frac 12 \left[-\frac {\ln (1-2u)}2 + \frac {\ln (1+2u)}2 \right]_0^\frac 13 \\ & = \frac 14 \ln \left(\frac {1+2u}{1-2u} \right) \bigg|_0^\frac 13 \\ & = \frac {\ln 5}4 \approx \boxed{0.402} \end{aligned}

Great Brilliant freaks think alike....have a good one, Chew-Seong!

tom engelsman - 1 year ago
Tom Engelsman
Jun 3, 2020

Let us rewrite the above integrand as the following:

cos ( x ) 2 cos ( 2 x ) 1 = cos ( x ) 2 ( 2 cos 2 ( x ) 1 ) 1 = cos ( x ) 4 cos 2 ( x ) 3 = cos ( x ) 4 ( 1 sin 2 ( x ) ) 3 = cos ( x ) 1 4 sin 2 ( x ) = 1 2 [ 1 1 + 2 sin ( x ) + 1 1 2 sin ( x ) ] cos ( x ) \frac{\cos(x)}{2\cos(2x)-1} = \frac{\cos(x)}{2(2\cos^{2}(x)-1)-1} = \frac{\cos(x)}{4\cos^{2}(x)-3} = \frac{\cos(x)}{4(1-\sin^{2}(x))-3} = \frac{\cos(x)}{1-4\sin^{2}(x)} = \frac{1}{2} \cdot [\frac{1}{1+2\sin(x)} + \frac{1}{1-2\sin(x)}] \cdot \cos(x) .

Let u = sin ( x ) , d u = cos ( x ) d x , 0 u 1 3 u = \sin(x), du = \cos(x) dx, 0 \le u \le \frac{1}{3} , which now results in:

1 2 0 1 3 1 1 + 2 u + 1 1 2 u d u ; \frac{1}{2} \int_{0}^{\frac{1}{3}} \frac{1}{1+2u} + \frac{1}{1-2u} du;

or 1 4 [ ln ( 1 + 2 u ) ln ( 1 2 u ) ] 0 1 3 \frac{1}{4} \cdot [\ln(1+2u) - \ln(1-2u)] |_{0}^{\frac{1}{3}} ;

or 1 4 ln ( 5 ) . \boxed{\frac{1}{4} \ln(5)}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...