Hot topic: Limits

Calculus Level 5

α = lim n [ n ( e n n ! n n + 1 / 2 ( 2 π ) 1 ) ] \alpha= \displaystyle \lim_{n \to \infty} \left[ n \left( \frac{e^n n!}{n^{n+1/2} (\sqrt{2\pi})} -1 \right) \right]

If the above limit α \alpha exists, find 84 α 84\alpha .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

α = lim n [ n ( e n n ! 2 π n n + 1 / 2 1 ) ] = lim n [ n ( e n n Γ ( n ) 2 π n n + 1 / 2 1 ) ] By Stirling series = lim n [ n ( e n n 2 π n n + 1 / 2 2 π n n 1 / 2 e n ( 1 + 1 12 n + O ( 1 n 2 ) ) 1 ) ] = lim n [ 1 12 + O ( 1 n ) ] = 1 12 \begin{aligned} \alpha & =\lim_{n \to \infty} \left [ n \left(\frac{e^n n!} {\sqrt{2\pi} n^{n+1/2}}-1\right) \right] \\ & =\lim_{n \to \infty} \left [ n \left(\frac{e^n n \color{#3D99F6}{\Gamma (n)}}{\sqrt{2\pi} n^{n+1/2}}-1\right) \right] \quad \quad \small \color{#3D99F6}{\text{By Stirling series}} \\ & =\lim_{n \to \infty}\left[ n \left(\frac{e^n n}{\sqrt{2\pi} n^{n+1/2}}\cdot \frac{\sqrt{2\pi} n^{n-1/2}} {e^n} \left(1 +\frac {1} {12n} +O\left ( \frac {1} {n^2} \right) \right)-1 \right) \right] \\ & = \lim_{n \to \infty} \left [\frac {1} {12} +O\left ( \frac {1} {n} \right)\right] \\ & = \frac {1} {12} \end{aligned}

84 α = 7 \implies 84\alpha =\boxed {7}

@Chew-Seong Cheong Same way!! This problem is a nice way to remind us of the next terms of Stirling's approximation!!

Aaghaz Mahajan - 3 years, 2 months ago
Manuel Kahayon
Jun 6, 2016

We use stirling's approximation, particularly the upper bound for factorials. (Why the upper bound, I have no idea why, dont ask me!)

lim n ( n ! ) = 2 π n ( n e ) n ( 1 + 1 12 n 1 ) \displaystyle \lim_{n \to \infty} (n!) =\sqrt{2\pi n} \cdot( \frac{n}{e})^n \cdot (1+ \frac{1}{12n-1}) .

Therefore,

lim n n ( e n n ! n n + 1 / 2 ( 2 π ) 1 ) = lim n n ( e n ( 2 π n ( n e ) n ( 1 + 1 12 n 1 ) ) n n ( 2 π n ) 1 ) = lim n n ( 1 + 1 12 n 1 1 ) \large \displaystyle \lim_{n \to \infty} n( \frac{e^n n!}{n^{n+1/2} (\sqrt{2\pi})} -1) = \lim_{n \to \infty} n( \frac{e^n (\sqrt{2\pi n} \cdot( \frac{n}{e})^n \cdot (1+ \frac{1}{12n-1}))}{n^{n} (\sqrt{2\pi n})} -1) = \lim_{n \to \infty} n(1+\frac{1}{12n-1}-1)

Which arises after multiple cancellations and substitution of stirling's approximation.

Thus,

lim n n ( 1 + 1 12 n + 1 1 ) = lim n 12 n 1 = lim n 1 12 + 1 ( 12 ) ( 12 n 1 ) = 1 12 \displaystyle \lim_{n \to \infty} n(1+\frac{1}{12n+1}-1) = \lim \frac{n}{12n-1} = \lim_{n \to \infty} \frac{1}{12}+\frac{1}{(12)(12n-1)} = \boxed{\frac{1}{12}}

So, the limit is 1 12 \frac{1}{12} . Our required answer is 84 1 12 = 7 84 \cdot \frac{1}{12} = \boxed{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...