Too many things to handle!

Calculus Level 5

k = 1 ζ ( k + 1 ) 1 ( 2 + k k ) = A ln ( B π ) C γ D \large \displaystyle\sum _{ k=1 }^{ \infty }{ \dfrac { \zeta (k+1)-1 }{ \binom{2+k}{k} } } =A\ln { (B\pi ) } -C\gamma -D

The above equation holds true for positive integers A , B , C A,B,C and D D . Find A + B + C + D A+B+C+D .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Mar 28, 2016

The sum is S = 2 k = 1 ζ ( k + 1 ) 1 ( k + 1 ) ( k + 2 ) = 2 k = 2 ζ ( k ) 1 k ( k + 1 ) = 2 k = 2 ζ ( k ) 1 k 2 k = 2 ζ ( k ) 1 k + 1 = 2 2 γ 2 k = 2 ζ ( k ) 1 k + 1 \begin{array}{rcl} S & = & \displaystyle 2\sum_{k=1}^\infty \frac{\zeta(k+1)-1}{(k+1)(k+2)} \; = \; 2\sum_{k=2}^\infty \frac{\zeta(k)-1}{k(k+1)} \; = \; 2\sum_{k=2}^\infty \frac{\zeta(k)-1}{k} - 2\sum_{k=2}^\infty \frac{\zeta(k)-1}{k+1} \\ & = & \displaystyle 2 - 2\gamma - 2\sum_{k=2}^\infty \frac{\zeta(k)-1}{k+1} \end{array} and k = 2 ζ ( k ) 1 k + 1 = k = 2 n = 2 1 ( k + 1 ) n k = n = 2 k = 2 1 ( k + 1 ) n k = n = 2 [ n ln ( 1 n 1 ) + 1 + 1 2 n ] = lim N X N , \begin{array}{rcl} \displaystyle \sum_{k=2}^\infty \frac{\zeta(k)-1}{k+1} & = & \displaystyle \sum_{k=2}^\infty \sum_{n=2}^\infty \frac{1}{(k+1)n^k} \; = \; \sum_{n=2}^\infty \sum_{k=2}^\infty \frac{1}{(k+1)n^k} \\ & = & -\displaystyle \sum_{n=2}^\infty \left[ n \ln\big(1- n^{-1}\big) + 1 + \tfrac12n\right] \; = \; -\lim_{N \to \infty} X_N \;, \end{array} where X N = n = 2 N [ n ln ( n 1 ) n ln n + 1 + 1 2 n ] = n = 1 N 1 ( n + 1 ) ln n n = 2 N n ln n + ( N 1 ) + 1 2 ( H N 1 ) = N = 1 N 1 ln n N ln N + N + 1 2 H N 3 2 = ln N ! ( N + 1 2 ) ln N + N + 1 2 ( H N ln N ) 3 2 = ln ( N ! e N N N + 1 2 ) + 1 2 ( H N ln N ) 3 2 ln 2 π + 1 2 γ 3 2 , \begin{array}{rcl} X_N & = & \displaystyle \sum_{n=2}^N \left[ n \ln(n-1) - n \ln n + 1 + \tfrac12n\right] \\ & = & \displaystyle \sum_{n=1}^{N-1} (n+1) \ln n - \sum_{n=2}^N n \ln n + (N-1) + \tfrac12(H_N - 1) \\ & = & \displaystyle \sum_{N=1}^{N-1} \ln n - N \ln N + N + \tfrac12H_N - \tfrac32 \\ & = & \displaystyle \ln N! - (N+\tfrac12)\ln N + N + \tfrac12(H_N - \ln N) - \tfrac32 \\ & = & \displaystyle \ln\left(\frac{N! e^N}{N^{N+\frac12}}\right) + \tfrac12(H_N - \ln N) - \tfrac32 \\ & \to & \ln \sqrt{2\pi} + \tfrac12\gamma - \tfrac32 \;, \end{array} as N N \to \infty , using Stirling's approximation. Thus S = 2 2 γ + 2 ln 2 π + γ 3 = ln ( 2 π ) γ 1 S \; = \; 2 - 2\gamma + 2\ln\sqrt{2\pi} + \gamma - 3 \; = \; \ln(2\pi) - \gamma - 1 making the answer 1 + 2 + 1 + 1 = 5 1 + 2 + 1 + 1 = \boxed{5} .

nice solution!

Hamza A - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...