How about Chebyshev?

Calculus Level 3

Compute

0 π / 2 sin ( 2015 x ) sin ( x ) d x . \large \int_0^{\pi /2} \frac{ \sin(2015x) }{\sin(x)} \, dx.

π 3 \frac\pi3 π 4 \frac\pi4 π 2 \frac\pi2 π 6 \frac\pi6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Otto Bretscher
Nov 14, 2015

sin ( ( 2 n + 1 ) x ) sin x d x = x + k = 1 n 1 k sin ( 2 k ) + C \int \frac{\sin((2n+1)x)}{\sin{x}}dx=x+\sum_{k=1}^{n}\frac{1}{k}\sin(2k)+C

Yeah. To be clear, Mr (Professor) Otto Bretscher used the identity

2 sin ( x ) [ 1 + cos ( 2 x ) + cos ( 4 x ) + + cos ( 2 n x ) ] = sin [ ( 2 n + 1 ) x ] + sin ( x ) . 2\sin (x) \left [ 1 + \cos(2x) + \cos(4x) + \ldots + \cos(2nx) \right] = \sin[(2n+1)x] + \sin(x).


Alternatively, one can prove this by applying sin ( x ) = 1 2 ( e i x e i x ) \sin(x) = \frac12 (e^{ix} - e^{-ix} ) .

Pi Han Goh - 5 years, 7 months ago

Log in to reply

I was integrating the Dirichlet Kernel sin ( ( 2 n + 1 ) x ) sin x = k = n n e 2 k i x = 1 + 2 k = 1 n cos ( 2 k x ) \frac{\sin((2n+1)x)}{\sin x}=\sum_{k=-n}^{n}e^{2k ix}=1+2\sum_{k=1}^{n}\cos(2kx)

Please stop this ridiculous "Mr (Prof) O B " business and call me "Comrade Otto" ;)

Otto Bretscher - 5 years, 7 months ago

Log in to reply

Affirmative, Comrade Otto.

Pi Han Goh - 5 years, 7 months ago

WİRKLİCH COMRADE

Soner Karaca - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...