How big could it be...

For a positive integer n n , define f ( n ) = i = 0 gcd ( i , n ) 2 i \displaystyle f(n)=\sum_{i=0}^{\infty} \frac{\gcd(i,n)}{2^i} and let g : N Q g : \mathbb{N} \to \mathbb{Q} be a function such that d n g ( d ) = f ( n ) \displaystyle \sum_{d \mid n} g(d) = f(n) for all positive integers n n . Given that g ( 12321 ) = p q g(12321)=\dfrac{p}{q} for relatively prime positive integers p p and q q , find ν 2 ( p ) \nu_2(p) .


The answer is 12324.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mehdi Elkouhlani
May 27, 2018

First if f ( n ) = d n g ( d ) f(n)=\sum_{d|n} g(d) then g ( n ) = d n μ ( n / d ) f ( d ) g(n) =\sum_{d|n} \mu(n/d) f(d) . (Mobius inversion).

We have g c d ( k , n ) = d n , d k ϕ ( d ) = d n e k ( d ) ϕ ( d ) gcd(k,n)=\sum_{d|n,d|k} \phi(d) =\sum_{d|n} e_k(d)\phi(d) , such that e k ( d ) = 1 e_k(d)=1 if d k d|k and 0 0 otherwise and ϕ ( n ) \phi(n) is Euler's totient function.

We get g ( n ) = d n μ ( n / d ) f ( d ) = k = 0 1 2 k d n g c d ( k , d ) μ ( n / d ) = k = 0 1 2 k e k ( n ) ϕ ( n ) g(n) =\sum_{d|n} \mu(n/d) f(d)=\sum_{k=0}^{\infty} \frac{1}{2^{k}}\sum_{d|n} gcd(k,d)\mu(n/d)=\sum_{k=0}^{\infty} \frac{1}{2^{k}}e_k(n)\phi(n) .( ( e k ϕ 1 ) ( n ) = g c d ( k , n ) (e_k\phi *1)(n)=gcd(k,n) )

Finally g ( n ) = ϕ ( n ) k = 0 1 2 k n = ϕ ( n ) 2 n 2 n 1 g(n)=\phi(n)\sum_{k=0}^{\infty} \frac{1}{2^{kn}}=\phi(n)\frac{2^{n}}{2^{n}-1} . The answer will be v 2 ( ϕ ( 12321 ) ) + 12321 = 12324 v_2(\phi(12321))+12321 =12324

What does ν 2 \nu_2 denote?

Joe Mansley - 2 months, 1 week ago
Patrick Corn
Nov 20, 2017

By Mobius inversion we have g ( n ) = d n μ ( n / d ) f ( d ) g(n) = \sum\limits_{d|n} \mu(n/d) f(d) where μ \mu is the Mobius function. In this case we have 12321 = 3 2 3 7 2 12321 = 3^2 \cdot 37^2 so we get g ( 12321 ) = f ( 12321 ) f ( 4107 ) f ( 333 ) + f ( 111 ) . g(12321) = f(12321) - f(4107) - f(333) + f(111). So g ( 12321 ) = i = 0 a i 2 i g(12321) = \sum_{i=0}^\infty \frac{a_i}{2^i} where a i = gcd ( i , 12321 ) gcd ( i , 4107 ) gcd ( i , 333 ) + gcd ( i , 111 ) . a_i = \gcd(i,12321)-\gcd(i,4107)-\gcd(i,333)+\gcd(i,111). It's not too hard to see that a i a_i is nonzero if and only if 12321 i , 12321 | i, in which case it equals 12321 4107 333 + 111 = 7992. 12321-4107-333+111=7992.

So g ( 12321 ) = j = 0 7992 2 12321 j = 7992 1 1 2 12321 = 7992 2 12321 2 12321 1 . g(12321) = \sum\limits_{j=0}^\infty \frac{7992}{2^{12321j}} = \frac{7992}{1-\frac1{2^{12321}}} = \frac{7992 \cdot 2^{12321}}{2^{12321}-1}. Since 7992 = 8 999 , 7992 = 8 \cdot 999, we get v 2 ( p ) = v 2 ( 7992 ) + 12321 = 12324 . v_2(p) = v_2(7992)+12321 = \fbox{12324}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...