How bout this one?

Calculus Level 3

What type of curve is given by the following equation?

( x y ) = e ( 0 t t 0 ) ( 1 2 3 2 ) d t \begin{pmatrix} x \\ y \end{pmatrix} =\int e^{\begin{pmatrix} 0 & -t\\ t & 0 \end{pmatrix}} \begin{pmatrix} \frac{1}{2}\\ \frac{\sqrt{3}}{2} \end{pmatrix}dt

Circle Lemniscate Lissajous Curve Rose Curve

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Jan 16, 2021

First, the matrix A is looked at:

A = [ 0 t t 0 ] A = \left[ \begin{matrix} 0&-t\\t&0 \end{matrix}\right]

The eigen values and their corresponding eigen vectors are:

λ 1 = i t ; v 1 = 1 2 [ i 1 ] \lambda_1 = it \ ; \ \mathrm{v}_1 = \frac{1}{\sqrt{2}} \left[ \begin{matrix} i\\1\end{matrix}\right] λ 2 = i t ; v 2 = 1 2 [ i 1 ] \lambda_2 = -it \ ; \ \mathrm{v}_2 = \frac{1}{\sqrt{2}} \left[ \begin{matrix} -i\\1\end{matrix}\right]

We define:

V = [ v 1 v 2 ] V = \left[ \begin{matrix}\mathrm{v}_1 & \mathrm{v}_2 \end{matrix}\right]

From the eigen value decomposition of a matrix, we know that:

A = V D V 1 A = VDV^{-1}

Now, the matrix exponential:

e A = V e D V 1 \mathrm{e}^{A} = V \mathrm{e}^{D} V^{-1} e A = V [ e i t 0 0 e i t ] V 1 \implies \mathrm{e}^{A}= V\left[ \begin{matrix} \mathrm{e}^{it} &0\\0&\mathrm{e}^{-it} \end{matrix}\right] V^{-1}

We can see that the matrix V V is an orthogonal matrix, so its inverse is simply the complex conjugate transpose of V V . Using all this information, plugging into the above expression, crunching out the successive matrix multiplications and simplifying leads to:

e A = [ cos t sin t sin t cos t ] \mathrm{e}^{A} = \left[ \begin{matrix} \cos{t}&-\sin{t}\\ \sin{t}&\cos{t} \end{matrix}\right]

Finally:

e A [ 1 2 3 2 ] = 1 2 [ cos t 3 sin t sin t + 3 cos t ] = [ sin ( t π 6 ) cos ( t π 6 ) ] \mathrm{e}^{A} \left[ \begin{matrix} \frac{1}{2}\\ \frac{\sqrt{3}}{2}\end{matrix}\right] =\frac{1}{2}\left[ \begin{matrix} \cos{t}-\sqrt{3}\sin{t} \\ \sin{t}+\sqrt{3}\cos{t}\end{matrix}\right] = \left[ \begin{matrix} -\sin\left(t - \frac{\pi}{6}\right) \\ \cos\left(t - \frac{\pi}{6}\right)\end{matrix}\right]

Therefore:

x = sin ( t π 6 ) d t x = -\int \sin\left(t - \frac{\pi}{6}\right) \ dt y = cos ( t π 6 ) d t y = \int \cos\left(t - \frac{\pi}{6}\right) \ dt

The result is the parametric equation of a circle.

Well done!!!

(Ignore the 3D one for now. It isn't right.)

James Wilson - 4 months, 3 weeks ago
James Wilson
Jan 16, 2021

I will show you how I obtained this odd-looking equation. Assume a parametrization of some curve that has the following properties that are consistent with a circle:

1) constant speed with respect to the parameter

2) constant magnitude of acceleration with respect to the parameter

Differentiate ( x ( t ) ) 2 + ( y ( t ) ) 2 = c (x'(t))^2+(y'(t))^2=c to obtain x x + y y = 0. x''x'+y''y' = 0.

The solution to this equation is x = f ( t ) y , y = f ( t ) x . x''=-f(t)y', y''=f(t)x'.

In order for the acceleration to remain constant in magnitude,

d = ( f ( t ) y ) 2 + ( f ( t ) x ) 2 = f ( t ) 2 c , d=(-f(t)y')^2+(f(t)x')^2 = f(t)^2c,

where d d is a constant.

Therefore f ( t ) = ± d c . f(t)=\pm\sqrt{\frac{d}{c}}. Hence, f ( t ) f(t) must be constant in this case.

Let k = ± d c . k=\pm\sqrt{\frac{d}{c}}.

This leads to the following system of equations:

[ x ( t ) y ( t ) ] = [ 0 k k 0 ] [ x ( t ) y ( t ) ] . \begin{bmatrix} x''(t)\\ y''(t) \end{bmatrix} =\begin{bmatrix} 0 & -k \\ k & 0 \end{bmatrix} \begin{bmatrix} x'(t)\\ y'(t) \end{bmatrix}.

Assume k = 1 k=1 and move on.

I will write this equation as ( X ) = A X ( X ) A X = 0 e A ( X ) e A A X = 0. (X')'=AX'\Rightarrow (X')'-AX'=0\Rightarrow e^{-\int A}(X')'-e^{-\int A}AX'=0.

( e A X ) = 0 e A X = C X = e A C = e A t C . \Rightarrow (e^{-\int A}X')'=0 \Rightarrow e^{-\int A}X' = C \Rightarrow X' = e^{\int A}C = e^{At}C.

Integrating both sides of the equation leads to the solution:

X = e [ 0 t t 0 ] C d t , X = \int e^{\begin{bmatrix} 0 & -t \\ t & 0 \end{bmatrix}} Cdt, where C, of course, is a vector of constants.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...