How can function mix with inequality

Algebra Level 5

If g ( x ) g(x) is a polynomial with

x 2 + 2 x + 666 g ( x ) 2 x 2 + 4 x + 667 x^2+2x+666 \le g(x) \le 2x^2+4x+667 for all real x x and g ( 1 ) = 671 g (1) =671 ,

find g ( 3 ) g(3) .


The answer is 689.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Choi Chakfung
May 13, 2016

r e w r i t e t h e e q u a t i o n , ( x + 1 ) 2 + 665 g ( x ) 2 ( x + 1 ) 2 + 665 g ( x ) = a ( x + 1 ) 2 + 665 w h e r e 1 a 2 g ( 1 ) = 671 671 = a ( 1 + 1 ) 2 + 665 a = 1.5 g ( 3 ) = 1.5 ( 3 + 1 ) 2 + 665 = 689 rewrite\quad the\quad equation\quad ,\\ { (x+1) }^{ 2 }+665\le g(x)\le 2({ x+1) }^{ 2 }+665\Rightarrow g(x)=a{ (x+1) }^{ 2 }+665\quad where\quad 1\le a\le 2\\ g(1)=671\\ 671=a{ (1+1) }^{ 2 }+665\Rightarrow a=1.5\\ g(3)=1.5{ (3+1) }^{ 2 }+665=689

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...