How can it be true?

Algebra Level 2

2 x + 2 x + 1 + 2 x + 2 + + 2 x + 2015 = 4 x + 4 x + 1 + 4 x + 2 + + 4 x + 2015 {2^x + 2^{x+1} + 2^{x+2} + \ldots + 2^{x+2015} = 4^x + 4^{x+1} + 4^{x+2} + \ldots + 4^{x+2015}}

If x x satisfies the equation above and it can be represented as log D ( A 1 + B C ) \log_D \left(\dfrac{A}{1+B^C} \right) for positive integers A A , B B , C C , and D D , where B B is prime, determine the smallest value of A + B + C + D A + B + C +D .


The answer is 2023.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 21, 2015

2 x + 2 x + 1 + 2 x + 2 + . . . + 2 x + 2015 = 4 x + 4 x + 1 + 4 x + 2 + . . . + 4 x + 2015 2 x ( 2 2016 1 ) 2 1 = 4 x ( 4 2016 1 ) 4 1 3 ˙ 2 x ( 2 2016 1 ) = 2 2 x ( 2 2016 1 ) ( 2 2016 + 1 ) 2 x ( 2 2016 + 1 ) = 3 x = log 2 ( 3 1 + 2 2016 ) \begin{aligned} 2^x + 2^{x+1} + 2^{x+2} + ... + 2^{x+2015} & = 4^x + 4^{x+1} + 4^{x+2} + ... + 4^{x+2015} \\ \frac{2^x (2^{2016} - 1 )}{2-1} & = \frac{4^x (4^{2016} - 1 )}{4-1} \\ 3\dot{} 2^x (2^{2016} - 1) & = 2^{2x} (2^{2016} - 1) (2^{2016} + 1) \\ 2^x (2^{2016} + 1) & = 3 \\ \Rightarrow x & = \log_2 \left( \frac{3}{1+2^{2016}} \right) \end{aligned}

A + B + C + D = 3 + 2 + 2016 + 2 = 2023 \Rightarrow A+B+C+D = 3+2+2016+2 = \boxed{2023}

This is the wrong answer.

Since it has asked for smallest value, 2^2016 can be written in many ways and for the required smallst value, it will be denoted as 64^336.

Then we get x=log(base-2)[3÷(1+64^336)]

Hence A=3 B=64 C=336 D= 2

And A+B+C+D= 3+64+336+2 =405

Raunak Agrawal - 4 years, 3 months ago

Log in to reply

B is prime

Abhishek Maurya - 3 years, 3 months ago

did same...

Dev Sharma - 5 years, 5 months ago

Team plz respond .

Raunak Agrawal - 4 years, 3 months ago

B is prime

Jerry McKenzie - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...