Consider the piecewise function f ( x ) defined as follows:
f ( x ) = ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ x − cos x + sin ( 1 ) + cos ( 1 ) 0 sin x 1 0 ≤ x < 1 x ≥ 1
If the Cauchy principal value of ∫ 0 ∞ f ( x ) d x is equal to A + cos ( B ) for positive integers A and B , submit your answer as A + B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Consider the integral ∫ 1 ∞ sin x 1 d x Substituting x 1 = u we have ∫ 1 ∞ sin x 1 d x = ∫ 1 0 u 2 − sin u d u = u sin u ∣ ∣ ∣ ∣ ∣ 1 0 − ∫ 1 0 u cos u = 1 − sin ( 1 ) + ∫ 0 1 u cos u
∫ 1 ∞ sin x 1 d x = 1 − sin ( 1 ) + ∫ 0 1 u cos u d u ∫ 1 ∞ sin x 1 d x − ∫ 0 1 u cos u d u = 1 − sin ( 1 )
Now consider the integral in the problem:
∫ 0 ∞ f ( x ) d x = − ∫ 0 1 x cos x d x + ∫ 0 1 ( cos ( 1 ) + sin ( 1 ) ) d x + ∫ 1 ∞ sin x 1 d x With regards to our result from the intro we can rewrite this as ∫ 0 ∞ f ( x ) d x = 1 − sin ( 1 ) + ∫ 0 1 ( cos ( 1 ) + sin ( 1 ) ) d x = 1 + cos 1
A = 1 , B = 1 , A + B = 2