A number theory problem by Wildan Bagus Wicaksono

Determine

1 2 + 3 4 + 5 8 + 7 16 + . . . \frac { 1 }{ 2 } +\frac { 3 }{ 4 } +\frac { 5 }{ 8 } +\frac { 7 }{ 16 } +...


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = 1 2 + 3 4 + 5 8 + 7 16 + = n = 1 2 n 1 2 n = n = 1 n 2 n 1 n = 1 1 2 n Replace 1 2 with x . = n = 1 n x n 1 1 2 ( 1 1 1 2 ) = n = 1 d d x x n 1 = d d x n = 1 x n 1 Note that 1 < x < 1 = d d x ( x 1 x ) 1 = 1 ( 1 x ) 2 1 Put back x = 1 2 = 1 ( 1 1 2 ) 2 1 = 3 \begin{aligned} S & = \frac 12 + \frac 34 + \frac 58 + \frac 7{16} + \cdots \\ & = \sum_{n=1}^\infty \frac{2n-1}{2^n} \\ & = {\color{#3D99F6} \sum_{n=1}^\infty \frac n{2^{n-1}}} - \sum_{n=1}^\infty \frac 1{2^n} & \small \color{#3D99F6} \text{Replace }\frac 12 \text{ with }x. \\ & = {\color{#3D99F6} \sum_{n=1}^\infty nx^{n-1}} - \frac 12 \left(\frac 1{1-\frac 12} \right) \\ & = \sum_{n=1}^\infty \frac d{dx}x^n -1 \\ & = \frac d{dx}\sum_{n=1}^\infty x^n -1 & \small \color{#3D99F6} \text{Note that } - 1 < x < 1 \\ & = \frac d{dx} \left(\frac x{1-x}\right) -1 \\ & = \frac 1{(1-x)^2} -1 & \small \color{#3D99F6} \text{Put back }x = \frac 12 \\ & = \frac 1{\left(1-\frac 12\right)^2} -1 \\ & = \boxed{3} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...