How did that pi get there?

π × n = 1 μ ( 4 n 3 ) 4 n 3 = ? \large \pi \times \sum_{n=1}^{\infty} \dfrac{\mu(4n-3)}{4n-3} =\, ?

Notation: μ \mu denotes the Möbius function .


The answer is 2.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julian Poon
Jan 16, 2016

I don't have a proof that the sum converges, so maybe somebody can fill up on that. So for my solution, I will be assuming that the sum converges.


Let primes p 1 , k p_{1,k} and p 1 , k p_{-1,k} be primes that satisfy the following:

mod ( p 1 , k , 4 ) = 1 mod ( p 1 , k , 4 ) = 1 \operatorname{mod}\left(p_{1,k},4\right)=1\\\operatorname{mod}\left(p_{-1,k},4\right)=-1

Where p n , 1 < p n , 2 < p n , 3 . . . p_{n,1}<p_{n,2}<p_{n,3}...

Let the set that contains all primes p n , k p_{n,k} be S n S_{n} . It is known that every prime except 2 and 3 belong to sets S 1 S_{1} and S 1 S_{-1} .

First thing to notice is that for a square-free number to be of the form 4 n 3 4n-3 , it has to be a product of an even number of primes from set S 1 S_{-1} and any number of primes from set S 1 S_{1} .

So, the sum can be re-written to be:

n = 1 μ ( 4 n 3 ) 4 n 3 = 1 1 p 1 + ( k > j 1 p 1 , k p 1 , j + k > j 1 p 1 , k p 1 , j ) ( a > b > c 1 p 1 , a p 1 , b p 1 , c + a > b 1 p 1 , a p 1 , b 1 p 1 ) + ( a > b > c > d 1 p 1 , a p 1 , b p 1 , c p 1 , d + k > j 1 p 1 , k p 1 , j k > j 1 p 1 , k p 1 , j + a > b > c > d 1 p 1 , a p 1 , b p 1 , c p 1 , d ) . . . \sum_{n=1}^{\infty} \dfrac{\mu(4n-3)}{4n-3}=1-\sum \frac { 1 }{ p_{ 1 } } +\left( \sum _{ k>j } \frac { 1 }{ p_{ 1,k }p_{ 1,j } } +\sum _{ k>j } \frac { 1 }{ p_{ -1,k }p_{ -1,j } } \right) -\left( \sum _{ a>b>c } \frac { 1 }{ p_{ 1,a }p_{ 1,b }p_{ 1,c } } +\sum _{ a>b } \frac { 1 }{ p_{ -1,a }p_{ -1,b } } \sum \frac { 1 }{ p_{ 1 } } \right) +\left( \sum _{ a>b>c>d } \frac { 1 }{ p_{ 1,a }p_{ 1,b }p_{ 1,c }p_{ 1,d } } +\sum _{ k>j } \frac { 1 }{ p_{ 1,k }p_{ 1,j } } \sum _{ k>j } \frac { 1 }{ p_{ -1,k }p_{ -1,j } } +\sum _{ a>b>c>d } \frac { 1 }{ p_{ -1,a }p_{ -1,b }p_{ -1,c }p_{ -1,d } } \right) ... = 1 2 ( p 1 ( 1 p 1 1 ) p 1 ( 1 + p 1 1 ) + p 1 ( 1 p 1 1 ) p 1 ( 1 p 1 1 ) ) =\frac{1}{2}\left(\prod _{p_1}^{ }\left(1-p_1^{-1}\right)\prod _{p_{-1}}^{ }\left(1+p_{-1}^{-1}\right)+\prod _{p_1}^{ }\left(1-p_1^{-1}\right)\prod _{p_{-1}}^{ }\left(1-p_{-1}^{-1}\right)\right) = 1 2 ( p 1 ( 1 p 1 1 ) p 1 ( 1 + p 1 1 ) + [ ( 1 1 2 ) ( 1 1 3 ) ] 1 p is prime ( 1 p 1 ) ) =\frac{1}{2}\left(\prod _{p_1}^{ }\left(1-p_1^{-1}\right)\prod _{p_{-1}}^{ }\left(1+p_{-1}^{-1}\right)+\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\right]^{-1}\prod _{p \text{ is prime}}^{ }\left(1-p^{-1}\right)\right)

We will first evaluate p is prime ( 1 p 1 ) \prod _{p \text{ is prime}}^{ }\left(1-p^{-1}\right) . Through Euler Product

p is prime ( 1 p s ) = 1 ζ ( s ) \prod _{p \text{ is prime}}^{ }\left(1-p^{-s}\right)=\frac{1}{\zeta{(s)}}

Where ζ ( s ) \zeta{(s)} is the Riemann Zeta Function. Since ζ ( 1 ) \zeta{(1)} diverges

p is prime ( 1 p 1 ) = 0 \prod _{p \text{ is prime}}^{ }\left(1-p^{-1}\right)=0

Now we will focus on prime product

p 1 ( 1 p 1 1 ) p 1 ( 1 + p 1 1 ) = p is prime ( 1 χ ( p ) p 1 ) \prod _{p_1}^{ }\left(1-p_1^{-1}\right)\prod _{p_{-1}}^{ }\left(1+p_{-1}^{-1}\right)=\prod _{p \text{ is prime}}^{ }\left(1-\chi(p)p^{-1}\right)

Where χ ( n ) \chi(n) is the Dirichlet character,

χ ( n ) = { 1 if m o d ( n , 4 ) = 1 1 if m o d ( n , 4 ) = 1 0 otherwise \chi (n)=\begin{cases} 1 \text{ if } \mod{(n,4)}=1 \\ -1 \text{ if } \mod{(n,4)}=-1\\ 0 \text{ otherwise} \end{cases}

Since χ ( n ) \chi{(n)} is completely multiplicative, through Euler Product: (This prime product is already known, and it is known to be convergent)

p is prime ( 1 χ ( p ) p 1 ) = [ n = 1 χ ( n ) n ] 1 \prod _{p \text{ is prime}}^{ }\left(1-\chi(p)p^{-1}\right)=\left[{\sum _{n=1}^{\infty}\frac{\chi(n) }{n}}\right]^{-1}

n = 1 χ ( n ) n = n = 0 ( 1 ) n 2 n + 1 = arctan ( 1 ) = π 4 \sum _{n=1}^{\infty}\frac{\chi(n) }{n}=\sum _{n=0}^{\infty}\frac{\left(-1\right)^n}{2n+1}=\arctan(1)=\frac{\pi}{4}

Putting it all together,

n = 1 μ ( 4 n 3 ) 4 n 3 = 1 2 ( 4 π + ( 1 1 2 ) ( 1 1 3 ) 0 ) = 2 π \sum_{n=1}^{\infty} \dfrac{\mu(4n-3)}{4n-3}=\frac{1}{2}\left(\frac{4}{\pi }+\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdot 0\right)=\frac{2}{\pi }

  1. It's not clear to me that the sum must converge. At best, I think it' because that μ ( ) = 1 , 1 \mu (\cdot ) = 1, -1 with equal density, so most of these will cancel out.
  2. Even given that the sum converges, we know that the sum doesn't converge absolutely. As such, great care has to be taken when rearranging the terms. I'm much more concerned about this point, than the first.

Calvin Lin Staff - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...