f(x) =0-1+2-3+4-5+6-7+8-9+\cdots \begin{cases} -x & \text{if }x \text{ is odd} \\ +x & \text{if }x \text{ is even} \end{cases}\\ p(x) = 1-2+3-4+5-6+7-8+9-10+ \cdots \begin{cases} -x & \text{if }x \text{ is even} \\ +x & \text{if }x \text{ is odd} \end{cases}
Two functions f ( x ) and p ( x ) are defined for all positive integer x as above. Find f ( x ) + p ( x + 1 ) , when x is odd .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
f(x)\quad =\quad 0-1+2-3+4-5+6-7+8-9+.....+\begin{cases} -x,\quad if\quad x\quad is\quad odd \\ +x,\quad if\quad x\quad is\quad even \end{cases}\\ p(x)\quad =\quad 1-2+3-4+5-6+7-8+9-10+.....+\begin{cases} -x,\quad if\quad x\quad is\quad even \\ +x,\quad if\quad x\quad is\quad odd \end{cases}\\ \\
So, f ( x ) can be written as
f ( x ) = ( − 1 ) [ 1 − 2 + 3 − 4 + 5 − 6 + 7 − 8 + 9 − 1 0 + . . . . + { − x , i f x i s e v e n + x , i f x i s o d d ]
That means, f ( x ) = ( − 1 ) × p ( x )
So, for f ( x ) a n d p ( x )
f ( x ) + p ( x ) = [ ( − 1 ) × p ( x ) ] + [ p ( x ) ] = − p ( x ) + p ( x ) = p ( x ) − p ( x ) = 0
Now, for f ( x ) + p ( x + 1 )
f ( x ) + p ( x + 1 ) = − p ( x ) + p ( x + 1 ) = − [ 1 − 2 + 3 − 4 + . . . + x ] + [ 1 − 2 + 3 − 4 + . . . + x − ( x + 1 ) ] = − [ 1 − 2 + 3 − 4 + . . . + x ] + [ 1 − 2 + 3 − 4 + . . . + x ] − ( x + 1 )
That yields,
f ( x ) + p ( x + 1 ) = − ( x + 1 ) = − x − 1 = − 1 − x = 0 − 1 − x
Problem Loading...
Note Loading...
Set Loading...
f ( x ) f ( x ) ⟹ f ( x ) + p ( x + 1 ) = 0 − 1 + 2 − 3 + ⋯ + ( − 1 ) x x = 0 − ( 1 − 2 + 3 − ⋯ + ( − 1 ) x + 1 x ) = 0 − p ( x ) = − p ( x ) = f ( x ) + p ( x ) − ( x + 1 ) Since x is odd, x + 1 is even, hence add a ’-’ sign = f ( x ) − f ( x ) − x − 1 = 0 − 1 − x