How do I add it?

Algebra Level 3

f(x) =0-1+2-3+4-5+6-7+8-9+\cdots \begin{cases} -x & \text{if }x \text{ is odd} \\ +x & \text{if }x \text{ is even} \end{cases}\\ p(x) = 1-2+3-4+5-6+7-8+9-10+ \cdots \begin{cases} -x & \text{if }x \text{ is even} \\ +x & \text{if }x \text{ is odd} \end{cases}

Two functions f ( x ) f(x) and p ( x ) p(x) are defined for all positive integer x x as above. Find f ( x ) + p ( x + 1 ) f(x) + p(x+ 1) , when x x is odd .

x + 1 x + 1 1 2 x \frac{1}{2}x x 1 x - 1 0 1 x 0 - 1 - x 2 x 1 2x - 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 28, 2016

f ( x ) = 0 1 + 2 3 + + ( 1 ) x x = 0 ( 1 2 + 3 + ( 1 ) x + 1 x ) = 0 p ( x ) f ( x ) = p ( x ) f ( x ) + p ( x + 1 ) = f ( x ) + p ( x ) ( x + 1 ) Since x is odd, x + 1 is even, hence add a ’-’ sign = f ( x ) f ( x ) x 1 = 0 1 x \begin{aligned} f(x) & = 0 - 1 + 2 - 3 + \cdots + (-1)^x x \\ & = 0 - \left(1-2+3-\cdots + (-1)^{x+1} x \right) \\ & = 0 - p(x) \\ f(x) & = - p(x) \\ \implies f(x) + p(x+1) & = f(x) + p(x) \color{#3D99F6}{- (x+1)} \quad \quad \small \color{#3D99F6}{\text{Since }x \text{ is odd, }x+1 \text{ is even, hence add a '-' sign}} \\ & = f(x) - f(x) - x - 1 \\ & = \boxed{0-1-x} \end{aligned}

Viki Zeta
May 27, 2016

f(x)\quad =\quad 0-1+2-3+4-5+6-7+8-9+.....+\begin{cases} -x,\quad if\quad x\quad is\quad odd \\ +x,\quad if\quad x\quad is\quad even \end{cases}\\ p(x)\quad =\quad 1-2+3-4+5-6+7-8+9-10+.....+\begin{cases} -x,\quad if\quad x\quad is\quad even \\ +x,\quad if\quad x\quad is\quad odd \end{cases}\\ \\

So, f ( x ) f(x) can be written as

f ( x ) = ( 1 ) [ 1 2 + 3 4 + 5 6 + 7 8 + 9 10 + . . . . + { x , i f x i s e v e n + x , i f x i s o d d ] f(x) = (-1)[1-2+3-4+5-6+7-8+9-10+ .... + \begin{cases} -x,\quad if\quad x\quad is\quad even \\ +x,\quad if\quad x\quad is\quad odd \end{cases}]

That means, f ( x ) = ( 1 ) × p ( x ) f(x) = (-1) \times p(x)

So, for f ( x ) a n d p ( x ) f(x)\quad and\quad p(x)

f ( x ) + p ( x ) = [ ( 1 ) × p ( x ) ] + [ p ( x ) ] = p ( x ) + p ( x ) = p ( x ) p ( x ) = 0 f(x) + p(x) = [(-1)\times p(x)] + [p(x)] = -p(x) + p(x) = p(x) - p(x) = 0

Now, for f ( x ) + p ( x + 1 ) f(x) + p(x+1)

f ( x ) + p ( x + 1 ) = p ( x ) + p ( x + 1 ) = [ 1 2 + 3 4 + . . . + x ] + [ 1 2 + 3 4 + . . . + x ( x + 1 ) ] = [ 1 2 + 3 4 + . . . + x ] + [ 1 2 + 3 4 + . . . + x ] ( x + 1 ) f(x) + p(x+1) = -p(x) + p(x+1) = -[1-2+3-4+ ... + x] + [1-2+3-4+ ... + x - (x + 1)] \\ \quad\quad\quad\quad = -[1-2+3-4+...+x] + [1-2+3-4+...+x] - (x+1)

That yields,

f ( x ) + p ( x + 1 ) = ( x + 1 ) = x 1 = 1 x = 0 1 x f(x) + p(x+1) = -(x+1) = -x - 1 = -1 - x = 0 - 1 - x

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...