How do I fire?

Classical Mechanics Level pending

For firing practice,an object is dropped from a helicopter 800 meters above the ground. A gun is horizontally 300 Meters away from the helicopter and has a firing speed of 150 meters/second. The object must be hit at a height of 300 meters above the ground. To the nearest degree, at what angle to the horizontal must the gun be fired?

48° 49° None of the rest 47° 46°

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aamir Faraaz
Jan 20, 2016

Shouldn't it be 45 degrees Siam?

Syed Baqir
Sep 6, 2015

S p e e d = { 150 c o s θ 150 s i n θ g t Speed\quad =\quad \begin{cases} 150\quad cos\theta \\ 150\quad sin\theta \quad -\quad gt \end{cases}

D i s t a n c e = { 150 ( t ) c o s θ 150 ( t ) s i n θ 1 2 ( g ) ( t ) 2 \because \quad Distance=\quad \begin{cases} 150\quad (t)\quad cos\quad \theta \\ 150\quad (t)\quad sin\quad \theta \quad -\quad \frac { 1 }{ 2 } \quad (g)\quad ({ t) }^{ 2 } \end{cases}

300 = 150 ( t ) c o s θ \therefore \quad 300\quad =\quad 150\quad (t)\quad cos\theta

150 s i n θ g ( t ) 0 150 s i n θ = g ( t ) 150\quad sin\theta \quad -\quad g(t)\quad 0\quad \Longleftrightarrow \quad 150\quad sin\theta \quad =\quad g(t)

t = 150 s i n θ g \Longrightarrow \quad t\quad =\quad \frac { 150\quad sin\theta }{ g }

Substitude :

300 = 150 ( 150 s i n θ g ) c o s θ 300\quad =\quad 150\quad (\frac { 150\quad sin\theta }{ g } )\quad cos\theta

2 g = 75 2 s i n θ c o s θ 2g\quad =\quad 75\quad *\quad 2\quad sin\theta \quad *\quad cos\theta

2 g = 75 s i n ( 2 θ ) 2g\quad =\quad 75\quad *\quad sin\quad (2\theta )

θ = 7.5 8 0 \Rrightarrow \theta \quad =\quad 7.58^{ 0 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...