How do I input this into my calculator?

( 1 × 2 × 3 ) + ( 1 × 2 × 4 ) + + ( 1 × 2 × 100 ) + ( 1 × 3 × 4 ) + ( 1 × 3 × 5 ) + + ( 1 × 3 × 100 ) + ( 1 × 4 × 5 ) + ( 1 × 4 × 6 ) + + ( 1 × 4 × 100 ) + + ( 98 × 99 × 100 ) \begin{aligned} &&(1 \times 2 \times 3) + (1 \times 2 \times 4) + \ldots + (1 \times 2 \times 100) \\ &+& (1 \times 3 \times 4) + (1 \times 3 \times 5) + \ldots + (1 \times 3 \times 100) \\ &+& (1 \times 4 \times 5) + (1 \times 4 \times 6) + \ldots + (1 \times 4 \times 100) \\ &+& \ldots \\ &+& (98 \times 99 \times 100) \end{aligned}

Let S S denote the value of the sum above. What is the last two digits of S S ?

Image credit: Wikipedia EncMstr


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Pi Han Goh
Feb 16, 2015

Let f ( x ) f(x) denote a monic 10 0 th 100^{\text{th}} degree polynomial with roots 1 , 2 , 3 , , 100 1,2,3, \ldots , 100

We use the following identities

k = 1 n k = n ( n + 1 ) 2 \displaystyle \sum_{k=1}^n k = \frac {n(n+1)}{2} , k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \displaystyle \sum_{k=1}^n k^2 = \frac {n(n+1)(2n+1)}{6} , k = 1 n k 3 = ( k = 1 n k ) 2 \displaystyle \sum_{k=1}^n k^3 = \left ( \sum_{k=1}^n k \right )^2

Let P k P_k denote the sum of k th k^{\text{th}} powers of roots of f ( x ) f(x)

Then we have

P 1 = 1 + 2 + + 100 = 100 ( 100 + 1 ) 2 = 5050 P_1 = 1 + 2 + \ldots + 100 = \frac {100(100+1)}{2} = 5050

P 2 = 1 2 + 2 3 + 10 0 2 = 100 ( 100 + 1 ) ( 2 ( 100 ) + 1 ) 6 = 338350 P_2 = 1^2 + 2^3 \ldots + 100^2 = \frac {100(100+1)(2(100)+1)}{6} = 338350

P 3 = 1 3 + 2 3 + + 10 0 3 = P 1 2 = 505 0 2 P_3 = 1^3 + 2^3 + \ldots + 100^3 = P_1 ^2 = 5050^2

Let S n S_n denote the n th n^{ \text{th}} symmetric sum of numbers 1 , 2 , 3 , , 100 1,2,3, \ldots , 100

Then S 1 = P 1 = 5050 , S 2 = 1 2 ( S 1 2 P 2 ) = 12582075 S_1 = P_1 = 5050, S_2 = \frac {1}{2} (S_1^2 - P_2 ) = 12582075

And lastly S = S 3 S = S_3 , apply this identity :

P 3 3 S 3 = S 1 3 3 S 1 S 2 S 3 = 1 3 ( P 3 S 1 3 + 3 S 1 S 2 ) 50 P_3 - 3S_3 = S_1^3 - 3S_1 S_2 \Rightarrow S_3 = \frac {1}{3} (P_3 - S_1^3 + 3S_1 S_2) \equiv \boxed{50}

nice approach

Dev Sharma - 5 years, 7 months ago
Akash Saha
Jan 30, 2016

I a m g o i n g t o g e n e r a l i z e t h e r e s u l t . C o n s i d e r : 1.1.1 + 1.1.2 + 1.1.3 . . . 1.1. n = 1.1 ( 1 + 2 + 3.. n ) = 1.1. n 1.2.1 + 1.2.2 + 1.2.3 . . . 1.2. n = 1.2 ( 1 + 2 + 3... n ) = 1.2. n . . . . . . . 1. n . 1 + 1. n . 2 + 1. n . 3 . . . 1. n . n = 1.52 ( 1 + 2 + 3... n ) = 1. n . n 2.1.1 + 2.1.2 + 2.1.3 . . . 2.1. n = 2.1 ( 1 + 2 + 3... n ) = 2.1. n . . . . . . . . . . . . . . n . n . 1 + n . n . 2 + n . n . 3 . . . n . n . n = n . n . ( 1 + 2 + 3.... n ) = n . n . n T h e t o t a l s u m a b o v e = N = [ n ] 3 N o w c o n s i d e r t h e n u m b e r s o f t h e f o r m α α β w h e r e α = { 1 , 2... n } a n d β = { 1 , 2... n } T h e r e a r e 3 n u m b e r s o f t h e a b o v e f o r m g i v i n g t h e s a m e p r o d u c t . T h a t i s 1.1.2 i s t h e s a m e a s 1.2.1 a n d 2.1.1 . T h u s , f r o m N , w e m u s t r e m o v e 3 × M w h e r e M i s n u m b e r s o f t h e f o r m α α β . M = 1.1.1 + 1.1.2 . . . . . 1.1. n = 1 2 n 2.2.1 + 2.2.2 . . . . . 2.2. n = 2 2 n . . . . . . . . . . . n . n . 1 + n . n . 2 . . . . . n . n . n = n 2 n T h e r e f o r e M = n 2 . n W h e n w e t a k e t h i s s u m 3 t i m e s , a l l t h e c u b e s h a v e b e e n s u b t r a c t e d t w o m o r e t i m e s , a n d w e d o n o t w a n t a n y c u b e s i n t h e f i n a l r e s u l t . T o c o m p e n s a t e f o r t h e d e f e c i t , w e a d d 2. n 3 T h e r e m a i n i n g n u m b e r s a r e o f t h e f o r m α β γ . S i m i l a r t o t h e p r e v i o u s c a s e , t h e r e a r e 6 n u m b e r s w h i c h g i v e t h e s a m e s u m . i . e . α β γ = α γ β = β α γ = β γ α = γ α β = γ β α S o w e d i v i d e b y 6. T h u s , f i n a l r e s u l t = 1 6 { N 3 M + 2. n 3 } = 1 6 { [ n ] 3 3. n 2 . n + 2. n 3 } = 1 6 { [ n ( n + 1 ) 2 ] 3 3. n ( n + 1 ) ( 2 n + 1 ) 6 . n ( n + 1 ) 2 + 2. [ n ( n + 1 ) 2 ] 2 } A f t e r f a c t o r i z i n g , w e g e t n 2 ( n + 1 ) 2 ( n 1 ) ( n 2 ) 48 p u t n = 100 t o g e t t h e r e s u l t . 100 2 ( 101 ) 2 ( 99 ) ( 98 ) 48 m o d ( 100 ) = 20 , 618 , 771 , 250 m o d ( 100 ) = 50 I\quad am\quad going\quad to\quad generalize\quad the\quad result.\\ Consider\quad :\\ 1.1.1\quad +\quad 1.1.2\quad +\quad 1.1.3\quad ...\quad 1.1.n\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 1.1(1+2+3..n)\quad =\quad 1.1.\sum { n } \\ 1.2.1\quad +\quad 1.2.2\quad +\quad 1.2.3\quad ...\quad 1.2.n\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 1.2(1+2+3...n)\quad =\quad 1.2.\sum { n } \\ .......\\ 1.n.1\quad +\quad 1.n.2\quad +\quad 1.n.3\quad ...\quad 1.n.n\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 1.52(1+2+3...n)\quad =\quad 1.n.\sum { n } \\ 2.1.1\quad +\quad 2.1.2\quad +\quad 2.1.3\quad ...\quad 2.1.n\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 2.1(1+2+3...n)\quad =\quad 2.1.\sum { n } \\ .......\\ .......\\ n.n.1\quad +\quad n.n.2\quad +\quad n.n.3\quad ...\quad n.n.n\quad \quad \quad =n.n.(1+2+3....n)\quad =\quad n.n.\sum { n } \\ The\quad total\quad sum\quad above\quad =\quad N\quad =\quad { \left[ \sum { n } \right] }^{ 3 }\\ Now\quad consider\quad the\quad numbers\quad of\quad the\quad form\quad \alpha \alpha \beta \quad where\quad \alpha =\{ 1,2...n\} \quad and\quad \beta =\{ 1,2...n\} \\ There\quad are\quad 3\quad numbers\quad of\quad the\quad above\quad form\quad giving\quad the\quad same\quad product.\\ That\quad is\quad 1.1.2\quad is\quad the\quad same\quad as\quad 1.2.1\quad and\quad 2.1.1\quad .Thus,\quad from\quad N,\quad we\quad must\quad remove\quad 3\times M\\ where\quad M\quad is\quad numbers\quad of\quad the\quad form\quad \alpha \alpha \beta .\\ M\quad =\quad 1.1.1\quad +\quad 1.1.2\quad .....\quad 1.1.n\quad \quad \quad =\quad { 1 }^{ 2 }\quad \sum { n } \quad \\ \quad \quad \quad \quad \quad 2.2.1\quad +\quad 2.2.2\quad .....\quad 2.2.n\quad \quad \quad =\quad { 2 }^{ 2 }\quad \sum { n } \\ \quad \quad \quad \quad \quad ...........\\ \quad \quad \quad \quad \quad n.n.1\quad +\quad n.n.2\quad .....\quad n.n.n\quad \quad \quad =\quad { n }^{ 2 }\quad \sum { n } \\ Therefore\quad M\quad =\quad \sum { { n }^{ 2 } } .\sum { n } \\ When\quad we\quad take\quad this\quad sum\quad 3\quad times,\quad all\quad the\quad cubes\quad have\quad been\quad \\ subtracted\quad two\quad more\quad times,\quad and\quad we\quad do\quad not\quad want\quad any\quad cubes\\ in\quad the\quad final\quad result.\\ To\quad compensate\quad for\quad the\quad defecit,\quad we\quad add\quad 2.\sum { { n }^{ 3 } } \\ The\quad remaining\quad numbers\quad are\quad of\quad the\quad form\quad \alpha \beta \gamma .\\ Similar\quad to\quad the\quad previous\quad case,\quad there\quad are\quad 6\quad numbers\quad which\quad give\quad \\ the\quad same\quad sum.\quad i.e.\quad \alpha \beta \gamma \quad =\quad \alpha \gamma \beta \quad =\quad \beta \alpha \gamma \quad =\quad \beta \gamma \alpha \quad =\quad \gamma \alpha \beta \quad =\quad \gamma \beta \alpha \quad \\ So\quad we\quad divide\quad by\quad 6.\\ Thus,\quad final\quad result\quad =\quad \frac { 1 }{ 6 } \left\{ N\quad -\quad 3M\quad +\quad 2.\sum { { n }^{ 3 } } \right\} \quad \\ =\quad \frac { 1 }{ 6 } \left\{ { \left[ { \sum { n } } \right] }^{ 3 }\quad -\quad 3.\sum { { n }^{ 2 } } .\sum { n } \quad +\quad 2.\sum { { n }^{ 3 } } \right\} \\ =\frac { 1 }{ 6 } \left\{ { \left[ \frac { n(n+1) }{ 2 } \right] }^{ 3 }\quad -\quad 3.\frac { n(n+1)(2n+1) }{ 6 } .\frac { n(n+1) }{ 2 } \quad +\quad 2.{ \left[ \frac { n(n+1) }{ 2 } \right] }^{ 2 } \right\} \\ After\quad factorizing,\quad we\quad get\quad \frac { { n }^{ 2 }{ (n+1) }^{ 2 }(n-1)(n-2) }{ 48 } \\ put\quad n=100\quad to\quad get\quad the\quad result.\\ \frac { { 100 }^{ 2 }{ (101) }^{ 2 }(99)(98) }{ 48 } mod(100)=20,618,771,250\quad mod(100)\quad =\quad \boxed { 50 } \\ \\ \quad

correct! thank you for your detailed solution!! +1

Pi Han Goh - 5 years, 4 months ago

Your solution would most likely be better than my solution if we extend this to the 4th, 5th, ... symmetric sums of the integers 1 to 100. Great work!

You should post a harder version of this problem! ahahahahahaa

Pi Han Goh - 5 years, 4 months ago

Thank you. And I didn't think about Newton Sums. Yes, for smaller numbers, your method is better. :D

Akash Saha - 5 years, 4 months ago
Eilon Lavi
Apr 21, 2015

We can cancel out almost everything modulo 100.

Step 1: Remove all products which include 100.

Step 2: Cancel out each term where no two terms add to 100. To do this we take the value farthest from 50 and flip it to get a complement. e.x. (27 x 36 x 86) cancels with (14 x 27 x 36). If we are given the former, we flip 86 to find the complement since it is farthest from 50. If we are given the latter, we flip 14 since it is farthest from 50. These cancel out since they sum to (86+14)(27)(36)

After this step all remaining terms contain exactly one pair of numbers which add to 100.

Step 3: Cancel out each term where the number other than the pair is not 50. To do this we just flip what this other number is to get a complement term.

After this step we are left with only terms of the form (n x 50 x (100-n)). These are 0 mod 100 when n is even and 50 mod 100 when n is odd. There are 25 cases when n is odd and so our final sum should be 50 mod 100.

Nice technique!

Peter Byers - 5 years, 8 months ago

P.S. An alternate way to do steps 2 and 3 is:

If a b c abc and ( 100 c ) ( 100 b ) ( 100 a ) (100-c)(100-b)(100-a) are two distinct terms in the sum, cancel them out. Then note that the cases where they are not distinct have 100 c = a 100-c=a and 100 b = b 100-b=b .

This leads into your last paragraph,

After this step we are left with only terms of the form (n x 50 x (100-n)). These are 0 mod 100 when n is even and 50 mod 100 when n is odd. There are 25 cases when n is odd and so our final sum should be 50 mod 100.

Peter Byers - 5 years, 8 months ago

Thus sum is 20618771250 and mod 100 gives 50.

Lu Chee Ket - 5 years, 7 months ago
Anubhav Balodhi
Jun 4, 2015

It's an interesting problem, being a programmer I wrote this code in Python:

1
2
3
4
5
6
7
8
sum=0
for num1 in range(1,99):
    for num2 in range(num1+1,100):
        for num3 in range(num2+1,101):
            #print(num1,num2,num3)
            sum+=(num1*num2*num3)

print(sum,sum%100)

Thus sum is 20618771250 and mod 100 gives 50.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...