⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ x ( 1 − 3 x + y 1 2 ) = 2 y ( 1 + 3 x + y 1 2 ) = 6
x and y are real numbers satisfying the system of equations above.
If x = a + b 3 and y = c + d 3 , where a , b , c and d are integers, submit your answer as a + b + c + d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Awesome sir!!! Did it same way.
First we cube both sides and we will get,
x(1- 3 x + y 1 2 ) 2 =4
and
y(1+ 3 x + y 1 2 ) 2 =36
Then we rearrange it
(1- 3 x + y 1 2 ) 2 = x 4
(1+ 3 x + y 1 2 ) 2 = y 3 6
then we expand both equations
1- 3 x + y 2 4 + 9 x 2 + 6 x y + y 2 1 4 4 = x 4
1+ 3 x + y 2 4 + 9 x 2 + 6 x y + y 2 1 4 4 = y 3 6
Then we plus these equations, and we will get
2+ 9 x 2 + 6 x y + y 2 2 8 8 = x 4 + y 3 6
But we can divide this equation by 2 and we will get
1+ 9 x 2 + 6 x y + y 2 1 4 4 = x 2 + y 1 8
Then we can completing the square on the left hand side by
(1+ 3 x + y 1 2 ) 2 - 3 x + y 2 4 = x 2 + y 1 8
But
(1+ 3 x + y 1 2 ) 2 = y 3 6
Therefore our equation equal to
y 3 6 - 3 x + y 2 4 = x 2 + y 1 8
and we move 3 x + y 2 4 to the right side
y 3 6 = x 2 + y 1 8 + 3 x + y 2 4
and we can simplified the right side
x y 2 y + 1 8 x + 3 x + y 2 4 or equl to 3 x 2 y + x y 2 5 4 x 2 + 4 8 x y + 2 y 2
that mean
y 3 6 = 3 x 2 y + x y 2 5 4 x 2 + 4 8 x y + 2 y 2
and we cross multiplying and we will get
1 0 8 x 2 y + 3 6 x y 2 = 5 4 x 2 y + 4 8 x y 2 + 2 y 3
and then we will get
5 4 x 2 y - 1 2 x y 2 - 2 y 3 =0
and then we divided it by 2y
2 7 x 2 - 6 x y - y 2 =0
then we can factories this equation
(9x+y)\(3x-y)=0
Therefore y=3x or y=-9x
Then we substitute y=-9x in this equation 1+\(\frac{144}{9x^2+6xy+y^2}\)= x 2 + y 1 8
we will get x 2 =-2 (which is not possible) so y=-9x is rejected
But if we substitute y=3x in this equation 1+ 9 x 2 + 6 x y + y 2 1 4 4 = x 2 + y 1 8 we will get that,
x 2 - 8 x + 4 =0
and if we used quadratic formula we will get that
x=4+2 3 and y=12+6 3
or
x=4-2 3 and y=12-6 3
But if we substitute x=4-2 3 and y=12-6 3 into the original equation we will get -2 there fore x can not be 4-2 3
Therefore the answer is
x=4+2 3 and y=12+6 3
Comparing coefficient a=4 b=2 c=12 d=6
a+b+c+d=24
Problem Loading...
Note Loading...
Set Loading...
⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ x ( 1 − 3 x + y 1 2 ) = 2 y ( 1 + 3 x + y 1 2 ) = 6 ⟹ x ( 1 − 3 x + y 1 2 ) 2 = 4 ⟹ y ( 1 + 3 x + y 1 2 ) 2 = 3 6 . . . ( 1 ) . . . ( 2 )
⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ ( 1 ) : ( 2 ) : ( 1 − 3 x + y 1 2 ) 2 = x 4 ( 1 + 3 x + y 1 2 ) 2 = y 3 6 ⟹ 1 − 3 x + y 2 4 + ( 3 x + y 1 2 ) 2 = x 4 ⟹ 1 + 3 x + y 2 4 + ( 3 x + y 1 2 ) 2 = y 3 6 . . . ( 1 a ) . . . ( 2 a )
( 2 a ) − ( 1 a ) : 3 x + y 4 8 1 2 x y 2 7 x 2 − 6 x y − y 2 ( 9 x + y ) ( 3 x − y ) = y 3 6 − x 4 = x y 3 6 x − 4 y = ( 9 x − y ) ( 3 x + y ) = 2 7 x 2 + 6 x y − y 2 = 0 = 0
⟹ { y = − 9 x y = 3 x rejected, x or y < 0 ∵ x , y in the equations. accepted
Now, we have:
( 1 ) : x ( 1 − 3 x + y 1 2 ) 2 x ( 1 − 3 x + 3 x 1 2 ) 2 ( x − 2 ) 2 x 2 − 8 x + 4 ⟹ x y = 4 = 4 = 4 x = 0 = 4 + 2 3 = 1 2 + 6 3 x = 4 − 2 3 is not a solution upon substituting in the equations.
⟹ a + b + c + d = 4 + 2 + 1 2 + 6 = 2 4