How do you solve simultaneous equations?

Algebra Level 4

{ x ( 1 12 3 x + y ) = 2 y ( 1 + 12 3 x + y ) = 6 \large{\begin{cases} \sqrt x \left(1 - \dfrac{12}{3x+y} \right) = 2 \\ \sqrt y \left(1 + \dfrac{12}{3x+y} \right) = 6 \end{cases}}

x x and y y are real numbers satisfying the system of equations above.

If x = a + b 3 x = a + b \sqrt3 and y = c + d 3 y = c + d\sqrt3 , where a , b , c a,b,c and d d are integers, submit your answer as a + b + c + d a+b+c+d .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 11, 2016

{ x ( 1 12 3 x + y ) = 2 x ( 1 12 3 x + y ) 2 = 4 . . . ( 1 ) y ( 1 + 12 3 x + y ) = 6 y ( 1 + 12 3 x + y ) 2 = 36 . . . ( 2 ) \begin{cases} \sqrt x \left(1 - \dfrac{12}{3x+y} \right) = 2 & \implies x \left(1 - \dfrac{12}{3x+y} \right)^2 = 4 & ...(1) \\ \sqrt y \left(1 + \dfrac{12}{3x+y} \right) = 6 & \implies y \left(1 + \dfrac{12}{3x+y} \right)^2 = 36 & ...(2) \end{cases}

{ ( 1 ) : ( 1 12 3 x + y ) 2 = 4 x 1 24 3 x + y + ( 12 3 x + y ) 2 = 4 x . . . ( 1 a ) ( 2 ) : ( 1 + 12 3 x + y ) 2 = 36 y 1 + 24 3 x + y + ( 12 3 x + y ) 2 = 36 y . . . ( 2 a ) \begin{cases} (1): & \left(1 - \dfrac{12}{3x+y} \right)^2 = \dfrac 4x & \implies 1 - \dfrac {24}{3x+y} + \left(\dfrac{12}{3x+y} \right)^2 = \dfrac 4x & ...(1a) \\ (2): & \left(1 + \dfrac{12}{3x+y} \right)^2 = \dfrac {36}y & \implies 1 + \dfrac {24}{3x+y} + \left(\dfrac{12}{3x+y} \right)^2 = \dfrac {36}y & ...(2a) \end{cases}

( 2 a ) ( 1 a ) : 48 3 x + y = 36 y 4 x = 36 x 4 y x y 12 x y = ( 9 x y ) ( 3 x + y ) = 27 x 2 + 6 x y y 2 27 x 2 6 x y y 2 = 0 ( 9 x + y ) ( 3 x y ) = 0 \begin{aligned} (2a)-(1a): \quad \frac {48}{3x+y} & = \frac {36}y - \frac 4x \\ & = \frac {36x-4y}{xy} \\ 12xy & = (9x-y)(3x+y) \\ & = 27x^2 + 6xy - y^2 \\ 27x^2 - 6xy - y^2 & = 0 \\ (9x+y)(3x-y) & = 0 \end{aligned}

{ y = 9 x rejected, x or y < 0 x , y in the equations. y = 3 x accepted \implies \begin{cases} y = -9x & \color{#D61F06}{\text{rejected, } x \text{ or } y <0 \because \sqrt x, \sqrt y \text{ in the equations.}} \\ y = 3x & \color{#3D99F6}{\text{accepted}} \end{cases}

Now, we have:

( 1 ) : x ( 1 12 3 x + y ) 2 = 4 x ( 1 12 3 x + 3 x ) 2 = 4 ( x 2 ) 2 = 4 x x 2 8 x + 4 = 0 x = 4 + 2 3 x = 4 2 3 is not a solution upon substituting in the equations. y = 12 + 6 3 \begin{aligned} (1): \quad x \left(1 - \dfrac{12}{3x+y} \right)^2 & = 4 \\ x \left(1 - \dfrac{12}{3x+3x} \right)^2 & = 4 \\ (x-2)^2 & = 4x \\ x^2 - 8x + 4 & = 0 \\ \implies x & = 4 + 2\sqrt 3 & \small \color{#D61F06}{x = 4-2\sqrt 3 \text{ is not a solution upon substituting in the equations.}} \\ y & = 12 + 6\sqrt 3 \end{aligned}

a + b + c + d = 4 + 2 + 12 + 6 = 24 \implies a+b+c+d = 4+2+12+6 = \boxed{24}

Awesome sir!!! Did it same way.

ADAMS AYOADE - 4 years, 8 months ago

First we cube both sides and we will get,

x(1- 12 3 x + y ) 2 \frac{12}{3x+y})^2 =4

and

y(1+ 12 3 x + y ) 2 \frac{12}{3x+y})^2 =36

Then we rearrange it

(1- 12 3 x + y ) 2 \frac{12}{3x+y})^2 = 4 x \frac{4}{x}

(1+ 12 3 x + y ) 2 \frac{12}{3x+y})^2 = 36 y \frac{36}{y}

then we expand both equations

1- 24 3 x + y \frac{24}{3x+y} + 144 9 x 2 + 6 x y + y 2 \frac{144}{9x^2+6xy+y^2} = 4 x \frac{4}{x}

1+ 24 3 x + y \frac{24}{3x+y} + 144 9 x 2 + 6 x y + y 2 \frac{144}{9x^2+6xy+y^2} = 36 y \frac{36}{y}

Then we plus these equations, and we will get

2+ 288 9 x 2 + 6 x y + y 2 \frac{288}{9x^2+6xy+y^2} = 4 x \frac{4}{x} + 36 y \frac{36}{y}

But we can divide this equation by 2 and we will get

1+ 144 9 x 2 + 6 x y + y 2 \frac{144}{9x^2+6xy+y^2} = 2 x \frac{2}{x} + 18 y \frac{18}{y}

Then we can completing the square on the left hand side by

(1+ 12 3 x + y ) 2 \frac{12}{3x+y})^2 - 24 3 x + y \frac{24}{3x+y} = 2 x \frac{2}{x} + 18 y \frac{18}{y}

But

(1+ 12 3 x + y ) 2 \frac{12}{3x+y})^2 = 36 y \frac{36}{y}

Therefore our equation equal to

36 y \frac{36}{y} - 24 3 x + y \frac{24}{3x+y} = 2 x \frac{2}{x} + 18 y \frac{18}{y}

and we move 24 3 x + y \frac{24}{3x+y} to the right side

36 y = 2 x \frac{36}{y}=\frac{2}{x} + 18 y \frac{18}{y} + 24 3 x + y \frac{24}{3x+y}

and we can simplified the right side

2 y + 18 x x y \frac{2y+18x}{xy} + 24 3 x + y \frac{24}{3x+y} or equl to 54 x 2 + 48 x y + 2 y 2 3 x 2 y + x y 2 \frac{54x^2+48xy+2y^2}{3x^2y+xy^2}

that mean

36 y = 54 x 2 + 48 x y + 2 y 2 3 x 2 y + x y 2 \frac{36}{y}=\frac{54x^2+48xy+2y^2}{3x^2y+xy^2}

and we cross multiplying and we will get

108 x 2 108x^2 y y + 36 x 36x y 2 y^2 = 54 x 2 54x^2 y y + 48 x 48x y 2 y^2 + 2 y 3 2y^3

and then we will get

54 x 2 54x^2 y y - 12 x 12x y 2 y^2 - 2 y 3 2y^3 =0

and then we divided it by 2y

27 x 2 27x^2 - 6 x 6x y y - y 2 y^2 =0

then we can factories this equation

(9x+y)\(3x-y)=0

Therefore y=3x or y=-9x

Then we substitute y=-9x in this equation 1+\(\frac{144}{9x^2+6xy+y^2}\)= 2 x \frac{2}{x} + 18 y \frac{18}{y}

we will get x 2 x^2 =-2 (which is not possible) so y=-9x is rejected

But if we substitute y=3x in this equation 1+ 144 9 x 2 + 6 x y + y 2 \frac{144}{9x^2+6xy+y^2} = 2 x \frac{2}{x} + 18 y \frac{18}{y} we will get that,

x 2 x^2 - 8 x 8x + 4 4 =0

and if we used quadratic formula we will get that

x=4+2 3 \sqrt{3} and y=12+6 3 \sqrt{3}

or

x=4-2 3 \sqrt{3} and y=12-6 3 \sqrt{3}

But if we substitute x=4-2 3 \sqrt{3} and y=12-6 3 \sqrt{3} into the original equation we will get -2 there fore x can not be 4-2 3 \sqrt{3}

Therefore the answer is

x=4+2 3 \sqrt{3} and y=12+6 3 \sqrt{3}

Comparing coefficient a=4 b=2 c=12 d=6

a+b+c+d=24

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...