lo g 3 1 0 8 OR lo g 5 3 7 5
Which one of the numbers above is greater?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good! A simpler approach is to apply the inequalities for the pairs 1 0 8 , 8 1 and 3 7 5 , 6 2 5 . Do you see why?
lo g 3 1 0 8 > lo g 3 8 1 = 4 and lo g 5 3 7 5 < lo g 5 6 2 5 = 4
∴ lo g 5 3 7 5 < 4 < lo g 3 1 0 8
This follows from the monotonicity of the logarithm function, or more specifically, the real-valued base 5 -logarithm is strictly increasing. More generally speaking, we used the following fact here:
0 < a < b ⟹ lo g x a < lo g x b ∀ x ∈ ( 1 , ∞ )
Nice solution, I did it in an almost identical way (by taking multiples of 3 and 5 out equally for both logs until I could compare them by observation).
lo g 3 1 0 8 lo g 5 3 7 5 = lo g 1 0 3 lo g 1 0 1 0 8 = lo g 1 0 3 lo g 1 0 4 × 3 3 = lo g 1 0 3 3 lo g 1 0 3 + lo g 1 0 4 = 3 + lo g 1 0 3 lo g 1 0 4 > 4 = lo g 1 0 5 lo g 1 0 3 7 5 = lo g 1 0 5 lo g 1 0 3 × 5 3 = lo g 1 0 5 3 lo g 1 0 5 + lo g 1 0 3 = 3 + lo g 1 0 5 lo g 1 0 3 < 4
Therefore, lo g 3 1 0 8 > lo g 5 3 7 5
Nicely done. Here's my approach:
lo g 3 1 0 8 > lo g 3 8 1 = lo g 3 3 4 = 4 lo g 3 3 = 4
= 1 + 3 lo g 5 5 = 1 + lo g 5 1 2 5 > lo g 5 3 + lo g 5 1 2 5 = lo g 5 3 7 5 .
l o g 3 1 0 8 = 3 l o g 3 4
l o g 5 3 7 5 = 3 l o g 5 3
l o g 3 4 > l o g 5 3
Wrong. Check your working again.
I looked at it this way: lo g 3 8 1 = 4 and lo g 5 6 2 5 = 4 . 625 is already much larger than 375, but with 81, there's a still a little ways to go until 108. So, lo g 3 1 0 8 > lo g 5 3 7 5
log 3 108 > log 3 81 > 4
log 5 375 < log 5 625 < 4.
The green one is greater than 4 and the blue one is less than 4. Thus the result is obvious.
Careful with your notations, it should be: . . . lo g 3 8 1 = 4 .
l o g 3 1 0 8 = l o g 3 ( 2 7 ⋅ 4 ) = 3 + l o g 3 4 > 4 ) . l o g 5 3 7 5 = l o g 5 ( 3 ⋅ 1 2 5 ) = 3 + l o g 5 3 < 4
Let lo g 3 1 0 8 = x Then, 3 x = 1 0 8 So, 4 < x < 5 Let lo g 5 3 7 5 = y Then, 5 y = 3 7 5 So, 3 < y < 4 So, y < 4 < x Therefore, x > y ⇒ lo g 3 1 0 8 > lo g 5 3 7 5
Remember:
lo g 3 1 0 8 v s . lo g 5 3 7 5 = lo g 3 lo g 1 0 8 v s . lo g 5 lo g 3 7 5
So? Making one expression equivalent to another does not necessarily make it closer to the answer.
Problem Loading...
Note Loading...
Set Loading...
We need to compare lo g 3 1 0 8 and lo g 5 3 7 5 .
We have,
lo g 3 1 0 8 = lo g 3 ( 2 7 × 4 ) = lo g 3 ( 3 3 × 4 ) = lo g 3 3 3 + lo g 3 4 = 3 + lo g 3 4
Similarly,
lo g 5 3 7 5 = lo g 5 ( 1 2 5 × 3 ) = lo g 5 ( 5 3 × 3 ) = lo g 5 5 3 + lo g 5 3 = 3 + lo g 5 3
Now consider,
lo g 3 4 > lo g 5 3
Adding 3 on both sides,
3 + lo g 3 4 > 3 + lo g 5 3
Using the already proved results we have,
lo g 3 1 0 8 > lo g 5 3 7 5