How do you compare logs ?

Algebra Level 2

log 3 108 OR log 5 375 \Large \color{#20A900}{\log_3108} \quad \color{#D61F06}{\text{OR}} \quad \color{#3D99F6}{\log_5375}

Which one of the numbers above is greater?


Join the Brilliant Classes and enjoy the excellence.
\color{#20A900}{\bullet} Quotation for the Problem : One can have no smaller or greater mastery than mastery of oneself. ~Leonardo Da Vinci
Both are equal in value \color{#D61F06}{\text{Both are equal in value}} log 3 108 \color{#20A900}{\log_3108} log 5 375 \color{#3D99F6}{\log_5375}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Abhishek Sharma
May 12, 2015

We need to compare log 3 108 \log _{ 3 }{ 108 } and log 5 375 \log _{ 5 }{ 375} .

We have,

log 3 108 \log _{ 3 }{ 108 } = log 3 ( 27 × 4 ) \log _{ 3 }{ (27 \times 4 } ) = log 3 ( 3 3 × 4 ) \log _{ 3 }{( {3}^{3} \times 4 )} = log 3 3 3 + log 3 4 \log _{ 3 }{ {3}^{3}} + \log_{3}{4} = 3 + log 3 4 3+\log_{3}{4}

Similarly,

log 5 375 \log _{ 5 }{ 375 } = log 5 ( 125 × 3 ) \log _{ 5 }{ (125 \times 3 }) = log 5 ( 5 3 × 3 ) \log _{ 5 }{ ({5}^{3} \times 3 )} = log 5 5 3 + log 5 3 \log _{ 5 }{ {5}^{3}}+\log_{5}{3} = 3 + log 5 3 3+\log_{5}{3}

Now consider,

log 3 4 > log 5 3 \log_{3}{4}>\log_{5}{3}

Adding 3 3 on both sides,

3 + log 3 4 > 3 + log 5 3 3+\log_{3}{4}>3+\log_{5}{3}

Using the already proved results we have,

log 3 108 > log 5 375 \log _{ 3 }{ 108 }>\log _{ 5 }{ 375 }

Moderator note:

Good! A simpler approach is to apply the inequalities for the pairs 108 , 81 108,81 and 375 , 625 375,625 . Do you see why?

log 3 108 > log 3 81 = 4 and log 5 375 < log 5 625 = 4 \log_3108\gt \log_381=4\quad\textrm{and}\quad \log_5375\lt \log_5625=4

log 5 375 < 4 < log 3 108 \therefore\quad \log_5375\lt 4\lt \log_3108

This follows from the monotonicity of the logarithm function, or more specifically, the real-valued base 5 5 -logarithm is strictly increasing. More generally speaking, we used the following fact here:

0 < a < b log x a < log x b x ( 1 , ) 0\lt a\lt b\implies \log_xa\lt \log_xb~~\forall~x\in(1,\infty)

Prasun Biswas - 6 years, 1 month ago

Nice solution, I did it in an almost identical way (by taking multiples of 3 and 5 out equally for both logs until I could compare them by observation).

Michael Fuller - 6 years, 1 month ago
Chew-Seong Cheong
May 13, 2015

log 3 108 = log 10 108 log 10 3 = log 10 4 × 3 3 log 10 3 = 3 log 10 3 + log 10 4 log 10 3 = 3 + log 10 4 log 10 3 > 4 log 5 375 = log 10 375 log 10 5 = log 10 3 × 5 3 log 10 5 = 3 log 10 5 + log 10 3 log 10 5 = 3 + log 10 3 log 10 5 < 4 \begin{aligned} \log_3{108} & = \dfrac{\log_{10}{108}}{\log_{10}{3}} = \dfrac{\log_{10}{4\times 3^3}}{\log_{10}{3}} = \dfrac{3\log_{10}{3}+\log_{10}{4}}{\log_{10}{3}} \\ & = 3+ \dfrac{\log_{10}{4}}{\log_{10}{3}} \color{#3D99F6}{> 4} \\ \log_5{375} & = \dfrac{\log_{10}{375}}{\log_{10}{5}} = \dfrac{\log_{10}{3\times 5^3}}{\log_{10}{5}} = \dfrac{3\log_{10}{5}+\log_{10}{3}}{\log_{10}{5}} \\ & = 3+ \dfrac{\log_{10}{3}}{\log_{10}{5}} \color{#3D99F6}{< 4} \end{aligned}

Therefore, log 3 108 > log 5 375 \boxed{ \log_3{108}} > \log_5{375}

Moderator note:

Nicely done. Here's my approach:

log 3 108 > log 3 81 = log 3 3 4 = 4 log 3 3 = 4 \log_3 108 > \log_3 81 = \log_3 3^4 = 4 \log_3 3 = 4

= 1 + 3 log 5 5 = 1 + log 5 125 > log 5 3 + log 5 125 = log 5 375 = 1 + 3 \log_5 5 = 1 + \log_5 125 > \log_5 3 + \log_5 125 = \log_5 375 .

Li Yuelin
May 11, 2015

l o g 3 108 = 3 l o g 3 4 log_{3}108 = 3log_{3}4

l o g 5 375 = 3 l o g 5 3 log_{5}375 = 3log_{5}3

l o g 3 4 > l o g 5 3 log_{3}4 > log_{5}3

Moderator note:

Wrong. Check your working again.

Hobart Pao
May 13, 2015

I looked at it this way: log 3 81 = 4 \log_{3} 81 = 4 and log 5 625 = 4 \log_{5} 625 = 4 . 625 is already much larger than 375, but with 81, there's a still a little ways to go until 108. So, log 3 108 > log 5 375 \log_{3} 108 > \log_{5} 375

Devin Ky
May 13, 2015

log 3 108 > log 3 81 > 4

log 5 375 < log 5 625 < 4.

The green one is greater than 4 and the blue one is less than 4. Thus the result is obvious.

Moderator note:

Careful with your notations, it should be: . . . log 3 81 = 4 ... \log_3 81 = 4 .

l o g 3 108 = l o g 3 ( 27 4 ) = 3 + l o g 3 4 > 4 ) log_{3} 108 = log_{3} (27\cdot 4) = 3+log_{3}4 > 4) . l o g 5 375 = l o g 5 ( 3 125 ) = 3 + l o g 5 3 < 4 log_{5} 375 =log_{5} (3\cdot 125) = 3+log_{5} 3 < 4

Raushan Sharma
May 13, 2015

Let log 3 108 = x \log_3 108 = x Then, 3 x = 108 3^{x} = 108 So, 4 < x < 5 4 < x < 5 Let log 5 375 = y \log_5 375 = y Then, 5 y = 375 5^{y} = 375 So, 3 < y < 4 3 < y < 4 So, y < 4 < x y < 4 < x Therefore, x > y x > y \Rightarrow log 3 108 \log_3 108 > > log 5 375 \log_5 375

Andrew Tawfeek
May 13, 2015

Remember:

log 3 108 v s . log 5 375 = log 108 log 3 v s . log 375 log 5 \quad \log _{ 3 }{ 108\quad vs.\quad \log _{ 5 }{ 375 } } \\ =\quad \frac { \log { 108 } }{ \log { 3 } } \quad vs.\quad \frac { \log { 375 } }{ \log { 5 } }

Moderator note:

So? Making one expression equivalent to another does not necessarily make it closer to the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...