How do you do?

Geometry Level 5

Let θ 1 \theta _{1} , θ 2 \theta_{2} and θ 3 \theta_{3} be three distinct solutions to the equation tan θ = 17 100 \tan{\theta} = \dfrac{17}{100} such that θ i ( 0 , 3 π ) \theta _{i} \in \left( 0 , 3\pi \right) , for all i = 1 , 2 , 3 i={1,2,3} . Find the value of

tan θ 1 3 × tan θ 2 3 + tan θ 2 3 × tan θ 3 3 + tan θ 3 3 × tan θ 1 3 \tan{\dfrac{\theta_{1}}{3}} \times \tan{\dfrac{\theta_{2}}{3}} + \tan{\dfrac{\theta_{2}}{3}} \times \tan{\dfrac{\theta_{3}}{3}} + \tan{\dfrac{\theta_{3}}{3}} \times \tan{\dfrac{\theta_{1}}{3}}


This is not my original problem.


The answer is -3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Surya Prakash
Oct 13, 2015

Since, tan 3 θ = 3 tan θ tan 3 θ 1 3 tan 2 θ \tan{3\theta} = \dfrac{3\tan{\theta} - \tan^3 \theta}{1- 3 \tan ^2 \theta} . So,

tan θ = 3 tan θ 3 tan 3 θ 3 1 3 tan 2 θ 3 \tan{\theta}= \dfrac{3\tan{\dfrac{\theta}{3}} - \tan^3 \dfrac{\theta}{3}}{1- 3 \tan ^2 \dfrac{\theta}{3}}

Let tan θ 3 = x \tan{\dfrac{\theta}{3}} = x and it is given that tan θ = 17 100 \tan{\theta} = \dfrac{17}{100} . So, the above equation turns into

100 x 3 51 x 2 300 x + 17 = 0 100 x^3 - 51 x^2 - 300 x +17 = 0

But tan θ 1 3 \tan{\dfrac{\theta_{1}}{3}} , tan θ 2 3 \tan{\dfrac{\theta_{2}}{3}} and tan θ 3 3 \tan{\dfrac{\theta_{3}}{3}} are the roots of this equation. So, Vieta is going to help us here. Since they are the roots we get

tan θ 1 3 × tan θ 2 3 + tan θ 2 3 × tan θ 3 3 + tan θ 3 3 × tan θ 1 3 = 300 100 = 3 \tan{\dfrac{\theta_{1}}{3}} \times \tan{\dfrac{\theta_{2}}{3}} + \tan{\dfrac{\theta_{2}}{3}} \times \tan{\dfrac{\theta_{3}}{3}} + \tan{\dfrac{\theta_{3}}{3}} \times \tan{\dfrac{\theta_{1}}{3}} = \dfrac{-300}{100} = \boxed{-3}

Moderator note:

Using this approach, we can see that the answer is independent of the exact value of tan θ \tan \theta .

Now, how can we (directly / more easily) show that \sum \tan \frac \tan { \theta_i}{3} \times \frac \tan { \theta_j}{3}= - 3 ?

\sum \tan \frac \tan { \theta_i}{3} \times \frac \tan { \theta_j}{3}= - 3 can you pleased make this expression clear?
Do you mean. tan θ i 3 × tan θ j 3 = 3 \sum \tan \frac { \theta_i}{3} \times \tan \frac { \theta_j}{3}= - 3 ?

Niranjan Khanderia - 5 years, 8 months ago

Same solution .

Aakash Khandelwal - 5 years, 8 months ago

tan θ = 3 tan θ 3 tan 3 θ 3 1 3 tan 2 θ 3 \tan{\theta}= \dfrac{3\tan{\dfrac{\theta}{3}} - \tan^3 \dfrac{\theta}{3}}{1- 3 \tan ^2 \dfrac{\theta}{3}} For convenience let us say X = tan θ 3 a n d Y = tan θ . X 3 3 Y X 2 3 X + Y = 0. By Vieta, the required result = 3 1 = 3. \text{For convenience let us say }X= \tan{\dfrac{\theta}{3}} ~~and~~Y=\tan\theta.\\ \therefore~X^3 - 3*Y*X^2 - 3*X + Y=0.\\ \text{By Vieta, the required result }=\dfrac {-3} 1=- 3.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...