How do you do this mentally?

Algebra Level 2

Calculate mentally:

99999919 97 = ? \dfrac{99999919}{97} = \, ?


The answer is 1030927.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 23, 2017

χ = 99999919 97 = 1 0 8 81 100 3 = 10 0 4 3 4 100 3 = ( 10 0 2 3 2 ) ( 10 0 2 + 3 2 ) 100 3 = ( 100 3 ) ( 100 + 3 ) ( 10 0 2 + 3 2 ) 100 3 = ( 100 + 3 ) ( 10 0 2 + 3 2 ) = ( 100 + 3 ) ( 10009 ) = 1000900 + 30027 = 1030927 \begin{aligned} \chi & = \frac {99999919}{97} \\ & = \frac {10^8-81}{100-3} \\ & = \frac {100^4-3^4}{100-3} \\ & = \frac {\left(100^2-3^2\right) \left(100^2+3^2\right)}{100-3} \\ & = \frac {\left(100-3\right)\left(100+3\right) \left(100^2+3^2\right)}{100-3} \\ & = \left(100+3\right) \left(100^2+3^2\right) \\ & = \left(100+3\right) \left(10009\right) \\ & = 1000900 + 30027 \\ & = \boxed{1030927} \end{aligned}

I did it the hard way :(

Razzi Masroor - 4 years, 2 months ago
Freddie Hand
Jan 22, 2017

We observe that 99999919 97 \large\frac{99999919}{97} is equivalent to 10 0 4 3 4 100 3 \dfrac{100^{4}-3^{4}}{100-3}

x 4 y 4 = ( x y ) ( x 3 + x 2 y + x y 2 + y 3 ) \large x^{4}-y^{4}=(x-y)(x^{3}+x^{2}y+xy^{2}+y^{3})

Therefore, 99999919 97 = 10 0 3 + 10 0 2 × 3 + 100 × 3 2 + 3 3 = 1000000 + 30000 + 900 + 27 = 1030927 \large\frac{99999919}{97}=100^{3}+100^{2}×3+100×3^{2}+3^{3}=1000000+30000+900+27=1030927

I did it the hard way :(

Razzi Masroor - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...