How does the golden ratio come in the play?

Geometry Level 3

Let θ \theta denote the value of the golden ratio , 1 + 5 2 \dfrac{1+\sqrt5}2 , find the value of sin 1 ( 1 2 θ ) \sin^{-1} \left( \dfrac1{2\theta} \right) in degrees.


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Feb 7, 2016

Substituting value of θ ( = 5 + 1 2 ) \theta(=\dfrac{\sqrt5+1}{2}) the given expression simplifies to: sin 1 ( 1 2 ( ( 5 + 1 ) 2 ) ) = sin 1 1 ( 5 + 1 ) \sin^{ -1 }(\dfrac{1 }{\small{2(\frac{(\sqrt5+1)}{2})}}) =\sin^{-1}\dfrac{1}{(\sqrt5+1)} = sin 1 ( 5 1 4 ) = 18 ° =\sin^{-1}(\dfrac{\sqrt5-1}{4})=\huge\boxed{\color{#007fff}{18°}} ________________________________ \Large\color{#D61F06}{\text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_}} L e t 18 = x 5 x = 90 3 x = 90 2 x sin 3 x = c o s 2 x ( sin 3 x = 3 sin x 4 sin 3 x a n d cos 2 x = 1 2 sin 2 x ) 4 sin 3 2 sin 2 x 3 sin x + 1 = 0 ( sin x 1 ) ( 4 sin 2 x + 2 sin x 1 ) = 0 Solving the quadratic, we get sin x = sin 18 = 5 1 4 ( sin 18 > 0 a n d sin 18 1 ) \small{\color{forestgreen}{\boxed{\color{#302B94}{Let~18=x\\ \Rightarrow 5x=90\\ \Rightarrow 3x=90-2x\\ \Rightarrow \sin 3x=cos 2x\\ \color{#EC7300}{(\sin 3x=3\sin x-4\sin^3 x~and~\cos 2x=1-2\sin^2 x)}\\ \Rightarrow 4\sin^3-2\sin^2 x-3\sin x+1=0\\ (\sin x-1)(4\sin^2x+2\sin x-1)=0\\ \text{Solving the quadratic, we get}\\ \sin x=\sin 18=\mathcal{\large{\dfrac{\sqrt5-1}{4}}}\\~~(\because\sin 18>0~ and~ \sin 18\neq1)}}}}

( ) \boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\huge{\left(\stackrel{ \stackrel{\frown}{\odot} ~~ \stackrel{\frown}{\odot} }{\smile}\right)}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Joel Yip - 5 years, 4 months ago

Log in to reply

You sure have patience ;P

PS I have edited something ;)

Nihar Mahajan - 5 years, 4 months ago

Log in to reply

Why is the centre appearing distorted?? \color{#D61F06}{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\color{#20A900}{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\color{#CEBB00}{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\color{#302B94}{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\color{plum}{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\color{#007fff}{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\color{magenta}{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\color{#0C6AC7}{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\color{#624F41}{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{~~}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Rishabh Jain - 5 years, 4 months ago

used Microsoft Word 2016

Joel Yip - 5 years, 4 months ago

how can you proof the last part?

Joel Yip - 5 years, 4 months ago

Log in to reply

Check the updated solution... : }

Rishabh Jain - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...