How far apart are these two circumspheres?

Algebra Level pending

The problem question: How far apart are these two circumspheres?

Here are 4 3-dimensional points on each sphere:

  • Sphere 1: ( 260 158 231 110 78 231 260 158 351 452 78 351 ) \left( \begin{array}{ccc} 260 & -158 & 231 \\ 110 & -78 & 231 \\ 260 & -158 & 351 \\ 452 & -78 & 351 \\ \end{array} \right)
  • Sphere 2: ( 152 642 351 302 722 351 152 642 471 344 282 351 ) \left( \begin{array}{ccc} 152 & 642 & 351 \\ 302 & 722 & 351 \\ 152 & 642 & 471 \\ 344 & 282 & 351 \\ \end{array} \right)

You will need to find the spheres' centers and radii. Since spheres look the same in all directions, the remainder of the problem can be solved without calculus to compute the minimum distance! But, the surface to surface minimum distance is desired as the answer.


The answer is 0.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I will work this problem twice, once using the full power of Wolfram Mathematica 11.3, which I used to generate and verify this problem. I am retired and my only relationship with Wolfram is as a customer.

s1 = Circumsphere [ p1 ] Sphere [ { 281 , 62 , 291 } , 229 ] \text{s1}=\text{Circumsphere}[\text{p1}] \Longrightarrow \text{Sphere}[\{281,62,291\},229]

s2 = Circumsphere [ p2 ] Sphere [ { 323 , 502 , 411 } , 229 ] \text{s2}=\text{Circumsphere}[\text{p2}] \Longrightarrow \text{Sphere}[\{323,502,411\},229]

EuclideanDistance [ { 281 , 62 , 291 } , { 323 , 502 , 411 } ] 458 \text{EuclideanDistance}[\{281,62,291\},\{323,502,411\}] \Longrightarrow 458

458 ( 229 + 229 ) 0 458-(229+229) \Longrightarrow 0

The second method uses multiple equations in multiple unknowns, which I will do using determinants. The x x , y y and z z columns are the respective point's coordinates, the x 2 + y 2 + z 2 x^2+y^2+z^2 column is that computation done on the points' coordinates and the last column of 1 1 s is just to make the matrix square.

This method is by W. H. Beyer .

D e t [ ( x y z x 2 + y 2 + z 2 1 260 158 231 145925 1 110 78 231 71545 1 260 158 351 215765 1 452 78 351 333589 1 ) ] = = 0 3283200 x 2 1845158400 x + 3283200 y 2 407116800 y + 3283200 z 2 1910822400 z + 377715744000 = 0 Det[\left( \begin{array}{ccccc} x & y & z & x^2+y^2+z^2 & 1 \\ 260 & -158 & 231 & 145925 & 1 \\ 110 & -78 & 231 & 71545 & 1 \\ 260 & -158 & 351 & 215765 & 1 \\ 452 & -78 & 351 & 333589 & 1 \\ \end{array} \right)] == 0 \Longrightarrow \\ 3283200 x^2-1845158400 x+3283200 y^2-407116800 y+3283200 z^2-1910822400 z+377715744000=0

If you examine this closely, then you might recognize that this is the formula for the circumsphere of those points.

By completing the square, this becomes more obvious.

( x 281 ) 2 + ( y 62 ) 2 + ( z 291 ) 2 = 229 2 (x-281)^2+(y-62)^2+(z-291)^2={229}^2

By apply the same procedure to the other set of points.

D e t [ ( x y z x 2 + y 2 + z 2 1 152 642 351 558469 1 302 722 351 735689 1 152 642 471 657109 1 344 282 351 321061 1 ) ] = = 0 L o n g r i g h t a r r o w 8323200 x 2 5376787200 x + 8323200 y 2 8356492800 y + 8323200 z 2 6841670400 z + 3935317161600 = 0 Det[ \left( \begin{array}{ccccc} x & y & z & x^2+y^2+z^2 & 1 \\ 152 & 642 & 351 & 558469 & 1 \\ 302 & 722 & 351 & 735689 & 1 \\ 152 & 642 & 471 & 657109 & 1 \\ 344 & 282 & 351 & 321061 & 1 \\ \end{array} \right) ]==0 Longrightarrow \\ 8323200 x^2-5376787200 x+8323200 y^2-8356492800 y+8323200 z^2-6841670400 z+3935317161600=0

( x 323 ) 2 + ( y 502 ) 2 + ( z 411 ) 2 = 229 2 (x-323)^2+(y-502)^2+(z-411)^2={229}^2

And, the last step is the same as in the first method.

Now, the meta-problem: how did I set this problem so that every number was an integer: What is the diagonal of rectangular parallelepiped with side of 3, 4 and 12? Hint: there are two Pythagorean triangles involved: 3,4 and 5 and 5, 12 and 13.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...