How far apart can we be?

Geometry Level 5

We have 15 points { A i } \{A_i\} placed within the unit sphere. What is the maximum possible value of

1 i < j 15 A i A j 2 ? \sum_{1 \leq i < j \leq 15} \left| A_i A_j\right|^2 ?

Details and assumptions

Each of the points A i = ( x i , y i , z i ) R 3 A_i = (x_i, y_i, z_i) \in \mathbb{R}^3 satisfy x i 2 + y i 2 + z i 2 1 x_i ^2 + y_i ^2 + z_i ^2 \leq 1 .


The answer is 225.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Lawrence Sun
May 20, 2014

Denote A i A_i as a vector. Then the sum in question is : 1 i j 15 ( A i A j ) ( A i A j ) = 1 i j 15 A i 2 2 A i A j + A j 2 . \sum_{1 \le i \le j \le 15} (A_i - A_j) \cdot (A_i - A_j) = \sum_{1 \le i \le j \le 15} A_i^2 - 2A_i \cdot A_j + A_j^2.

It is clear this sum is then:

i = 1 15 14 A i 2 1 i j 15 A i A j = i = 1 15 15 A i 2 1 i , j 15 A i A j = i = 1 15 15 A i 2 ( A 1 + A 2 + . . . + A 15 ) ( A 1 + A 2 + . . . + A 15 ) i = 1 15 15 A i 2 i = 1 15 15 = 225 \begin{array}{ll} & \quad \sum_{i=1}^{15} 14A_i^2 - \sum_{1 \le i \neq j \le 15} A_i \cdot A_j \\ & = \sum_{i=1}^{15} 15A_i^2 - \sum_{1 \le i,j \le 15} A_i \cdot A_j \\ & = \sum_{i=1}^{15} 15A_i^2 - (A_1 + A_2 + ... + A_{15}) \cdot (A_1 + A_2 + ... + A_{15}) \\ & \le \sum_{i=1}^{15} 15A_i^2 \\ & \le \sum_{i=1}^{15} 15 = 225 \end{array}

Equality occurs by having an equilateral triangle on the sphere and then 5 points at each vertex, so we are done.

[Note: Equality occurs when A i = 1 |A_i |=1 and A i = 0 \sum A_i=0 . There are many equality cases, like using any 5 equilateral triangles with circumcenter at the origin and radius 1.]

Joshua Xiong
May 20, 2014

We make the claim that if we place n > 1 n>1 points on the unit sphere, then the sum of the squares of the pairwise differences is less than or equal to n 2 n^2 .

To prove this, let the points A 1 , A 2 , , A n A_1, A_2, \ldots, A_{n} be placed at the end of the unit vectors v 1 , v 2 , , v n \mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_{n}} , respectively. This simplifies our problem into evaluating the maximum value of 1 i < j n v i v j 2 \displaystyle\sum_{1\le i<j\le n} |\mathbf{v_i}-\mathbf{v_j}|^2

We note that v i v j 2 = v i 2 2 v i v j + v j 2 |\mathbf{v_i}-\mathbf{v_j}|^2=|\mathbf{v_i}|^2-2\mathbf{v_i}\cdot \mathbf{v_j} + |\mathbf{v_j}|^2 . In order to get rid of the 2 v i v j 2\mathbf{v_i}\cdot\mathbf{v_j} terms, we can add by v 1 + v 2 + + v n 2 |\mathbf{v_1}+\mathbf{v_2}+\ldots+\mathbf{v_n}|^2 to get the equation

v 1 + v 2 + + v n 2 + 1 i < j n v i v j 2 = |\mathbf{v_1}+\mathbf{v_2}+\ldots+\mathbf{v_n}|^2+\displaystyle\sum_{1\le i<j\le n} |\mathbf{v_i}-\mathbf{v_j}|^2 = n ( v 1 2 + v 2 2 + + v n 2 ) = n ( 1 ( n ) ) = n 2 n(|\mathbf{v_1}|^2+|\mathbf{v_2}|^2+\ldots+|\mathbf{v_n}|^2)=n(1(n))=n^2\implies 1 i < j n v i v j 2 = n 2 v 1 + v 2 + + v n 2 \displaystyle\sum_{1\le i<j\le n} |\mathbf{v_i}-\mathbf{v_j}|^2 = n^2-|\mathbf{v_1}+\mathbf{v_2}+\ldots+\mathbf{v_n}|^2\implies

1 i < j n v i v j 2 n 2 \displaystyle\sum_{1\le i<j\le n} |\mathbf{v_i}-\mathbf{v_j}|^2 \le n^2

Thus, the pairwise sum is maximized when v 1 + v 2 + + v n 2 |\mathbf{v_1}+\mathbf{v_2}+\ldots+\mathbf{v_n}|^2 is minimized, and this occurs when v 1 + v 2 + + v n = 0 \mathbf{v_1}+\mathbf{v_2}+\ldots+\mathbf{v_n}=0 , so the maximum value is 1 5 2 = 225 15^2=\boxed{225} . This is easily accomplished, placing 5 5 of A i A_i at each vertex of a equilateral triangle inscribed in a great circle of the unit sphere.

Sayeed Tasnim
May 20, 2014

Let the vectors of each of the 15 points be u i {u_i} corresponding to the points A i {A_i} . For a vector v v , let v 2 = v 2 = v v v^2 = |v|^2 = v \cdot v for simplicity.

Thus, we have A i A j 2 = u i u j 2 = ( u i u j ) ( u i u j ) = u i 2 2 u i u j + u j 2 |A_i A_j|^2 = |u_i - u_j|^2 = (u_i - u_j) \cdot (u_i - u_j) = u_i^2 - 2u_i \cdot u_j + u_j^2 .

The summation becomes 14 i = 1 15 u i 2 2 1 i < j 15 u i u j 14 \displaystyle \sum_{i=1}^{15} u_i^2 - 2 \displaystyle \sum_{1 \leq i<j \leq 15} u_i \cdot u_j . The terms motivate the expansion of ( u 1 + + u 15 ) 2 = i = 1 15 u i 2 + 2 1 i < j 15 u i u j (u_1 + \ldots + u_{15})^2 = \displaystyle \sum_{i=1}^{15} u_i^2 + 2 \displaystyle \sum_{1 \leq i<j \leq 15} u_i \cdot u_j .

Hence, the original sum may be rearranged to 15 i = 1 15 u i 2 ( u 1 + + u 15 ) 2 15 \displaystyle \sum_{i=1}^{15} u_i^2 - (u_1 + \ldots + u_{15})^2 . The maximum value occurs when u i 2 = 1 u_i^2 = 1 for 1 i 15 1 \leq i \leq 15 and ( u 1 + + u 15 ) 2 = 0 (u_1 + \ldots + u_{15})^2=0 . This is easily done by selecting the roots of unity of order 15 as vectors. Hence, the sum is maximized at 15 15 = 225 15*15=225 .

Jp Delavin
May 20, 2014

Let the n n points A i ( x i , y i , z i ) , i = 1 , 2 , . . . , n A_i(x_i,y_i,z_i), \forall i=1,2,...,n be on or inside the unit sphere x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 . The square of the distance between the pair of points ( i , j ) (i,j) such that i < j i<j is:

( x i x j ) 2 + ( y i y j ) 2 + ( z i z j ) 2 (x_i-x_j)^2+(y_i-y_j)^2+(z_i-z_j)^2

= x i 2 + y i 2 + z i 2 + x j 2 + y j 2 + z j 2 2 ( x i x j + y i y j + z i z j ) =x_i^2+y_i^2+z_i^2+x_j^2+y_j^2+z_j^2-2(x_ix_j+y_iy_j+z_iz_j)

2 2 ( x i x j + y i y j + z i z j ) \leq 2-2(x_ix_j+y_iy_j+z_iz_j) .

Note that equality will occur if all the points are on the surface of the sphere (i.e., x i 2 + y i 2 + z i 2 = 1 , i x_i^2+y_i^2+z_i^2=1, \forall i ).

Since there are n ( n 1 ) 2 \frac{n(n-1)}{2} such pairs of ( i , j ) (i,j) ,

m : = 1 i < j n A i A j 2 n ( n 1 ) 2 1 i < j n ( x i x j + y i y j + z i z j ) m:=\displaystyle\sum_{1\leq i<j\leq n} \left| A_i A_j \right|^2 \leq n(n-1)-2 \displaystyle\sum_{1\leq i<j\leq n} (x_ix_j+y_iy_j+z_iz_j)

Now, ( i = 1 n x i ) 2 = i = 1 n x i 2 + 2 1 i < j n x i x j \left(\displaystyle\sum_{i=1}^n x_i\right)^2=\displaystyle\sum_{i=1}^n x_i^2+2\displaystyle\sum_{1\leq i<j\leq n} x_ix_j . Thus,

2 1 i < j n ( x i x j + y i y j + z i z j ) = X 2 + Y 2 + Z 2 i = 1 n ( x i 2 + y i 2 + z i 2 ) 2\displaystyle\sum_{1\leq i<j\leq n} (x_ix_j+y_iy_j+z_iz_j)=X^2+Y^2+Z^2-\displaystyle\sum_{i=1}^n (x_i^2+y_i^2+z_i^2)

where X = ( i = 1 n x i ) 2 , Y = ( i = 1 n y i ) 2 X=\left(\displaystyle\sum_{i=1}^n x_i\right)^2, Y=\left(\displaystyle\sum_{i=1}^n y_i\right)^2 , and Z = ( i = 1 n z i ) 2 Z=\left(\displaystyle\sum_{i=1}^n z_i\right)^2 .

Therefore,

m n 2 n X 2 Y 2 Z 2 + i = 1 n ( x i 2 + y i 2 + z i 2 ) m\leq n^2-n-X^2-Y^2-Z^2+\displaystyle\sum_{i=1}^n (x_i^2+y_i^2+z_i^2)\leq n 2 n X 2 Y 2 Z 2 + n = n 2 X 2 Y 2 Z 2 n^2-n-X^2-Y^2-Z^2+n=n^2-X^2-Y^2-Z^2 .

Again, equality will occur if all points are on the surface of the sphere.

Thus, m n 2 m\leq n^2 . In this case, n = 15 n=15 and m 225 m\leq 225 . Equality will occur if X 2 = Y 2 = Z 2 = 0 X^2=Y^2=Z^2=0 , which is the case if the centroid of the points is the origin.

Calvin Lin Staff
May 13, 2014

Note that A i A i 2 = 0 |A_i A_i|^2 =0 and doesn't affect the sum. Let the points be in vector form. Let X = i = 1 15 A i \vec{X} = \sum_{i=1}^{15} \vec{A_i} . For each k k , we have

i = 1 15 A i A k 2 = i = 1 15 ( A i A k ) ( A i A k ) = i = 1 15 ( A i A i 2 A i A k + A k A k ) 15 + 15 2 A k i = 1 15 A i = 30 2 A k X \begin{aligned} \sum_{i=1}^{15} |A_i A_k|^2 &= \sum_{i=1}^{15} (\vec{A_i} - \vec{A_k} ) \cdot (\vec{A_i} - \vec{A_k}) \\ &= \sum_{i=1}^{15} \left(\vec{A_i} \cdot \vec{A_i} - 2 \vec{A_i}\cdot \vec{A_k} + \vec{A_k} \cdot \vec{A_k}\right) \\ &\leq 15 + 15 - 2 \vec{A_k} \sum_{i=1}^{15} \vec{A_i} \\ &= 30 - 2 \vec{A_k} \cdot \vec{X} \\ \end{aligned}

Hence i < j A i A j 2 1 2 i = 1 15 j = 1 15 A i A j 2 = i = 1 15 ( 15 A i X ) = 225 X X 225 \sum_{i < j} |A_i A_j| ^2 \leq \frac {1}{2} \sum_{i=1}^{15} \sum_{j=1}^{15} |A_i A_j|^2 = \sum_{i=1}^{15} \left(15 - \vec{A_i} \cdot \vec{X}\right) = 225 - \vec{X} \cdot \vec{X} \leq 225 .

Equality holds if and only if X = 0 \vec{X} = 0 and A i = 1 i |A_i|=1 \, \forall i , which occurs in a regular 15-gon with circumradius 1 (and there are numerous more examples). Hence, the maximal value is 225.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...