How far to a pyramid

Geometry Level 5

A point P P in R 3 \mathbb{R}^{3} has distances of 3 , 7 , 9 , 11 3,7,9,11 (not necessarily in that order) from the base vertices of a square-based pyramid with all edges equal to s s . The distance of point P P to the apex of the pyramid is e e . The maximum value of e e can be expressed as a + b c \sqrt{a+ b \sqrt{c}} and its minimum as a b c , \sqrt{a- b \sqrt{c}}, where a , b , c a,b,c are positive integers and c c is square-free. Find the value of a + b + c a+b+c .


The answer is 89.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Dec 4, 2016

If the coordinates of P P are ( x , y , z ) (x,y,z) and the numbers 3 , 7 , 9 , 11 3,7,9,11 are d 1 , d 2 , d 3 , d 4 d_1,d_2,d_3,d_4 in some order, then ( x 1 2 s ) 2 + ( y 1 2 s ) 2 + z 2 = d 1 2 ( x + 1 2 s ) 2 + ( y 1 2 s ) 2 + z 2 = d 2 2 ( x + 1 2 s ) 2 + ( y + 1 2 s ) 2 + z 2 = d 3 2 ( x 1 2 s ) 2 + ( y + 1 2 s ) 2 + z 2 = d 4 2 \begin{array}{rclcrcl} (x-\tfrac12s)^2 + (y - \tfrac12s)^2 + z^2 & = & d_1^2 & \hspace{2cm}& (x + \tfrac12s)^2 + (y - \tfrac12s)^2 + z^2 & = & d_2^2 \\ (x+\tfrac12s)^2 + (y + \tfrac12s)^2 + z^2 & = & d_3^2 & & (x - \tfrac12s)^2 + (y + \tfrac12s)^2 + z^2 & = & d_4^2 \end{array} Subtracting these equations in pairs, we see that

2 x s = d 2 2 d 1 2 = d 3 2 d 4 2 2 y s = d 4 2 d 1 2 = d 3 2 d 2 2 2xs \; = \; d_2^2 - d_1^2 \; = \; d_3^2 - d_4^2 \hspace{2cm} 2ys \; = \; d_4^2 - d_1^2 \; = \; d_3^2 - d_2^2

and this can only happen if d 1 2 + d 3 2 = d 2 2 + d 4 2 d_1^2 + d_3^2 = d_2^2 + d_4^2 , so we have d 1 = 3 , d 2 = 7 , d 3 = 11 , d 4 = 9 d_1=3,d_2=7,d_3=11,d_4=9 , without loss of generality. Thus x = 20 s 1 x = 20s^{-1} and y = 36 s 1 y = 36s^{-1} , and so we have ( 20 s 1 1 2 s ) 2 + ( 36 s 1 1 2 s ) 2 + z 2 = 9 1696 s 2 + 1 2 s 2 + z 2 = 65 \begin{array}{rcl} (20s^{-1} - \tfrac12s)^2 + (36s^{-1} - \tfrac12s)^2 + z^2 & = & 9 \\ 1696s^{-2} + \tfrac12s^2 + z^2 & = & 65 \end{array} while the distance e e from P P to the vertex ( 0 , 0 , 1 2 s ) (0,0,\tfrac{1}{\sqrt{2}}s) satisfes e 2 = x 2 + y 2 + ( z 1 2 s ) 2 = x 2 + y 2 + z 2 + 1 2 s 2 s z 2 = 1696 s 2 + 1 2 s 2 + z 2 s z 2 = 65 s z 2 \begin{array}{rcl} e^2 & = & x^2 + y^2 + (z - \tfrac{1}{\sqrt{2}}s)^2 \; = \; x^2 + y^2 + z^2 + \tfrac12s^2 - sz\sqrt{2} \\ & = & 1696s^{-2} + \tfrac12s^2 + z^2 - sz\sqrt{2} \; = \; 65 - sz\sqrt{2} \end{array} Now 3392 + s 4 + 2 s 2 z 2 = 130 s 2 ( s 2 65 ) 2 + 2 s 2 z 2 = 833 2 s 2 z 2 = 833 ( s 2 65 ) 2 833 \begin{array}{rcl} 3392 + s^4 + 2s^2z^2 & = & 130s^2 \\ (s^2 - 65)^2 + 2s^2z^2 & = & 833 \\ 2s^2z^2 & = & 833 - (s^2 - 65)^2 \; \le \; 833 \end{array} so that s z 2 833 = 7 17 |sz\sqrt{2}| \le \sqrt{833} = 7\sqrt{17} , and hence 65 7 17 e 65 + 7 17 \sqrt{65 - 7\sqrt{17}} \; \le \; e \; \le \; \sqrt{65 + 7\sqrt{17}} making the answer 65 + 7 + 17 = 89 65 + 7 + 17 = \boxed{89} .

Maria Kozlowska
Dec 2, 2016

Let A ( 0 , s 2 , 0 ) , B ( s 2 , 0 , 0 ) , C ( 0 , s 2 , 0 ) , D ( s 2 , 0 , 0 ) A(0,\frac{s}{\sqrt{2}},0), B(\frac{s}{\sqrt{2}},0,0),C(0,-\frac{s}{\sqrt{2}},0),D(-\frac{s}{\sqrt{2}},0,0) be vertices of the pyramid's base, E ( 0 , 0 , s 2 ) E(0,0,\frac{s}{\sqrt{2}}) the pyramid's apex, P ( x , y , z ) P(x,y,z) the point in space, A P = 7 , B P = 3 , C P = 9 , D P = 11 AP=7, BP=3, CP=9, DP=11 , e = E P e=EP .

Equations for the distances A P , B P , C P , D P , E P AP,BP,CP,DP,EP can be manipulated to get a single equation

64 ( 53 x + 3185 x ² 38416 ) ( x ² e ² 65 x ² ) ² = 0 64 (-53 x⁴ + 3185x² - 38416) - (x² e² - 65x²)²=0

Ignoring negative values of e e we find that minimum value of e e is 65 7 17 \sqrt{65-7\sqrt{17}} and maximum is 65 + 7 17 \sqrt{65+7\sqrt{17}} .

a = 65 , b = 7 , c = 17 a=65, b=7, c=17 . The rounded values are 6.0115 6.0115 for minimum and 9.6882 9.6882 for maximum.

Can you explain how these values are calculated?

Calvin Lin Staff - 4 years, 6 months ago

Log in to reply

Mark has posted an excellent solution.

Maria Kozlowska - 4 years, 6 months ago

Thanks for adding that image, it shows me what was wrong with the initial diagram.

Calvin Lin Staff - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...