What's the fastest approach?

Algebra Level 3

Let α \alpha and β \beta be the roots of x 2 6 x 2 = 0 x^2 - 6x - 2 = 0 , with α > β \alpha > \beta . If a n = α n β n a_n = \alpha ^n - \beta ^n for n 1 n\ge 1 , then find the value of:

a 10 2 a 8 2 a 9 \frac {a_{10} - 2a_8} {2a_9}

0 1 4 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let a = x a=x , then x 2 6 x 2 = a 2 6 a 2 = 0 { x }^{ 2 }-6x-2={ a }^{ 2 }-6a-2=0 . Multiply the expression by a 8 { a }^{ 8 } . Thus,

a 10 6 a 9 2 a 8 = 0 a 10 2 a 8 2 a 9 = 3 { a }^{ 10 }-6{ a }^{ 9 }-2{ a }^{ 8 }=0\\ \Rightarrow \frac { { a }^{ 10 }-2{ a }^{ 8 } }{ 2{ a }^{ 9 } } =3

Sam Bealing
Apr 14, 2016

Let a n = α n + β n a_n={\alpha}^n+{\beta}^n . From the equation we get that α + β = a 1 = 6 , α β = 2 \alpha+\beta=a_1=6,{\alpha}{\beta}=-2 using vieta's formula.

6 a n 1 = ( α + β ) ( α n 1 + β n 1 ) = α n + β n + α β ( α n 2 + β n 2 ) ) = a n 2 a n 2 6 a_{n-1}=(\alpha+\beta) ({\alpha}^{n-1}+{\beta}^{n-1})={\alpha}^n+{\beta}^n+ {\alpha}{\beta}({\alpha}^{n-2}+{\beta}^{n-2}))=a_n-2a_{n-2}

So 6 a n 1 = a n 2 a n 2 6 a 9 = a 10 2 a 8 6 a_{n-1}=a_n-2 a_{n-2} \Rightarrow 6 a_9=a_{10}-2a_8

a 10 2 a 8 2 a 9 = 6 a 9 2 a 9 = 3 \frac{a_{10}-2 a_{8}}{2 a_9}=\frac{6 a_9}{2 a_9}=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...