How Good Are You In Vectors?

Geometry Level 4

If a , b , c \vec { a } ,\vec { b } ,\vec { c } are three vectors such that

{ a = c = 1 b = 4 b × c = 2 2 b = c + λ a \large \begin{cases} \left| \vec { a } \right| =\left| \vec { c } \right| =1 \\ \left| \vec { b } \right| =4 \\ \left| \vec { b } \times \vec { c } \right| =2 \\ 2\vec { b } =\vec { c } +\lambda \vec { a } \end{cases}

then λ \lambda , a scalar, can be:

65 8 3 \sqrt { 65-8\sqrt { 3 } } 17 \sqrt { 17 } 17 2 ( 2 + 3 ) \sqrt { \cfrac { 17 }{ 2 } (2+\sqrt { 3 } ) } 3 \sqrt { 3 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 16, 2018

b × c = 2 b c sin θ = 2 where b c = cos θ . 4 ( 1 ) sin θ = 2 θ = π 6 \begin{aligned} \left|\vec b \times \vec c \right| & = 2 \\ \implies \left| \vec b \right| \left|\vec c \right|\color{#3D99F6} \sin \theta & = 2 & \small \color{#3D99F6} \text{where }\vec b \cdot \vec c = \cos \theta. \\ 4(1)\sin \theta & = 2 \\ \implies \theta & = \frac \pi 6 \end{aligned}

b = 4 ( cos π 6 c + sin π 6 d ) where c and d are two = 4 ( 3 2 c + 1 2 d ) orthogonal unit vectors. 2 b = 4 3 c + 4 d = c + ( 4 3 1 ) c + 4 d Given: 2 b = c + λ a λ a = ( 4 3 1 ) c + 4 d λ a = ( 4 3 1 ) c + 4 d λ = ( 4 3 1 ) 2 + 4 2 = 65 8 3 \begin{aligned} \therefore \vec b & = 4\left(\cos \frac \pi 6{\color{#3D99F6}\vec c} + \sin \frac \pi 6 {\color{#3D99F6} \vec d}\right) & \small \color{#3D99F6} \text{where }\vec c \text{ and } \vec d \text{ are two} \\ & = 4\left(\frac {\sqrt 3}2{\color{#3D99F6} \vec c} + \frac 12{\color{#3D99F6} \vec d} \right) & \small \color{#3D99F6} \text{orthogonal unit vectors.} \\ 2 \vec b & = 4\sqrt 3 \vec c + 4\vec d \\ & = \vec c + \color{#3D99F6} (4\sqrt 3 - 1)\vec c + 4\vec d & \small \color{#3D99F6} \text{Given: }2\vec b = \vec c + \lambda \vec a \\ \implies \lambda \vec a & = (4\sqrt 3 - 1)\vec c + 4\vec d \\ \left|\lambda \vec a \right| & = \left|(4\sqrt 3 - 1)\vec c + 4\vec d\right| \\ \implies \lambda & = \sqrt{(4\sqrt 3 - 1)^2 + 4^2} \\ & = \boxed{\sqrt{65-8\sqrt 3}} \end{aligned}

Rab Gani
Mar 16, 2018

Using vector cross product |b x c| = |b|.|c|.sin (b,c), we find the angle between vector b, and c, 30 deg.Using cos rule for the triangle formed by vectors c,2b, and and λ(a,) ⃗ (| λa|)^2 = |2b|^2 + |c|^2 – 2|2b||c| cos θ. λ^2 = 64 + 1 - 8√3 , Then we find λ = √(65+8√3)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...