How high does it go?

Algebra Level 3

If a a , b b , and c c are the angles of an acute angled triangle, find the maximum value of

c y c sin a cos ( b + c ) \sum_{cyc} |\sin a\cos (b+c)|

3 4 \frac{\sqrt3}{4} 3 3 4 \frac{3\sqrt3}{4} 3 2 \frac{3}{2} 3 3 2 \frac{3\sqrt3}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mohd. Hamza
Feb 14, 2020

c y c sin a × cos ( b + c ) = c y c sin a × cos ( π a ) \displaystyle\sum_{cyc}|\sin a \times \cos (b+c)| = \displaystyle\sum_{cyc}|\sin a \times \cos (π-a)| c y c sin a × cos ( π a ) = c y c sin a × cos a = c y c sin 2 a 2 \Rightarrow \displaystyle\sum_{cyc}|\sin a \times \cos (π-a)|=\displaystyle\sum_{cyc}|-\sin a \times \cos a|=\displaystyle\sum_{cyc}\bigg|\frac{\sin {2a}}{2}\bigg| Let f ( x ) = sin 2 x 2 f(x) = \bigg|\frac{\sin {2x}}{2}\bigg| if x ϵ ( 0 , π 2 ) x \epsilon (0,\frac{π}{2}) then f ( x ) f(x) is concave. Therefore by Jensen's inequality f ( a 3 ) f ( a ) 3 f(\frac{\sum a}{3}) \geq \frac{\sum f(a)}{3} 3 f ( π 3 ) c y c sin a × cos ( b + c ) \Rightarrow 3 f(\frac{π}{3}) \geq \displaystyle\sum_{cyc}|\sin a \times \cos (b+c)| c y c sin a × cos ( b + c ) 3 × 3 2 × 2 \Rightarrow \displaystyle\sum_{cyc}|\sin a \times \cos (b+c)| \leq 3\times \frac{\sqrt3}{2 \times 2} Hence, c y c sin a × cos ( b + c ) 3 3 4 \Rightarrow \displaystyle\sum_{cyc}|\sin a \times \cos (b+c)| \leq \frac{3\sqrt3}{4}

This is a small issue but you forgot to show that equality holds. Of Course it is easy to see that letting a=b=c=60 degrees works though it should be mentioned.

Razzi Masroor - 1 year, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...