How is this possible?

Let f ( n ) f(n) be the smallest divisor of n n which is greater than or equal to n \sqrt{n} .

lim m ln ( m ) m 2 n = 1 m f ( n ) \large \lim_{m \to \infty} \frac{\ln(m)}{m^2} \sum\limits_{n=1}^{m}f(n)

If the value of the limit above is equal to π A B \dfrac{\pi^A}{B} for integers A A and B B , find A + B A+B .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let g ( n ) g(n) be the largest factor of n n less than or equal to n \sqrt{n} . f ( n ) = n / g ( n ) . f(n) = n/g(n).

n = 1 m 2 f ( n ) = n = 1 m 2 n / g ( n ) = k = 1 m 1 k n : k 2 n m 2 AND g ( n ) = k n = k = 1 m p : p prime AND k < p m 2 / k p + k = 1 m 1 k n : k 2 n m 2 AND g ( n ) = k AND n k p for any prime p > k n . \sum_{n=1}^{m^2} f(n) = \sum_{n=1}^{m^2} n / g(n) = \sum_{k=1}^m \frac{1}{k} \sum_{n : k^2 \leq n \leq m^2 \\ \text{ AND } g(n)=k} n = \sum_{k=1}^m \sum_{p : p \text{ prime } \\ \text{AND } k < p \leq m^2/k} p + \sum_{k=1}^m \frac{1}{k} \sum_{n : k^2 \leq n \leq m^2 \\ \text{ AND } g(n)=k \\ \text{ AND } n \neq k p \\ \text{ for any prime } p > k} n.

It is easy to prove that if g ( n ) = k g(n) = k and k 2 n m 2 and n k p for any prime p > k k^2 \leq n \leq m^2 \text{ and } n \neq k p \text{ for any prime } p > k , then n n is a product of primes each less than or equal to k k . You can use this to show that

k = 1 m 1 k n : k 2 n m 2 AND g ( n ) = k AND n k p for any prime p > k n = o ( m 4 log m 2 ) . \sum_{k=1}^m \frac{1}{k} \sum_{n : k^2 \leq n \leq m^2 \\ \text{ AND } g(n)=k \\ \text{ AND } n \neq k p \\ \text{ for any prime } p > k} n = o\left(\frac{m^4}{\log{m^2}}\right).

Using that p x p x 2 2 log x \sum_{p \leq x} p \sim \frac{x^2}{2 \log{x}} ,

k = 1 m p : p prime AND k < p m 2 / k p ( m 2 ) 2 2 log ( m 2 ) + k = 2 m ( ( m 2 k ) 2 2 log ( m 2 k ) k 2 2 log ( k ) ) . \sum_{k=1}^m \sum_{p : p \text{ prime AND } \\ k < p \leq m^2/k} p \sim \frac{\left(m^2\right)^2}{2 \log \left(m^2\right)} + \sum_{k=2}^m \left(\frac{\left(\frac{m^2}{k}\right )^2}{2 \log \left(\frac{m^2}{k}\right)}-\frac{k^2}{2 \log (k)}\right).

So

log m 2 m 4 n = 1 m 2 f ( n ) = log m 2 m 4 k = 1 m p : p prime AND k < p m 2 / k p + o ( 1 ) = 1 2 ( k = 2 m ( ( m 2 k ) 2 log ( m 2 ) m 4 log ( m 2 k ) k 2 log ( m 2 ) m 4 log ( k ) ) + 1 ) + o ( 1 ) = 1 2 ( k = 2 m ( log ( k ) ( 2 k 2 ) log ( m ) + 1 k 2 + o ( 1 log ( m ) ) ) + 1 ) + o ( 1 ) = 1 2 ( k = 2 m 1 k 2 + 1 ) = π 2 12 + o ( 1 ) \frac{\log{m^2}}{m^4} \sum_{n=1}^{m^2} f(n) = \frac{\log{m^2}}{m^4} \sum_{k=1}^m \sum_{p : p \text{ prime AND } \\ k < p \leq m^2/k} p + o(1) = \frac{1}{2} \left(\sum _{k=2}^m \left(\frac{\left(\frac{m^2}{k}\right)^2 \log \left(m^2\right)}{m^4 \log \left(\frac{m^2}{k}\right)}-\frac{k^2 \log \left(m^2\right)}{m^4 \log (k)}\right)+1\right) + o(1) =\frac{1}{2} \left(\sum _{k=2}^m \left(\frac{\log (k)}{\left(2 k^2\right) \log (m)}+\frac{1}{k^2}+o\left(\frac{1}{\log (m)}\right)\right)+1\right) + o(1)=\frac{1}{2} \left(\sum _{k=2}^m \frac{1}{k^2}+1\right)=\frac{\pi ^2}{12} + o(1)

The penultimate equality requires rigorous justification which I omit.

So the answer is 2 + 12 = 14 2+12=14 .

This method is cumbersome. Does anybody have a better answer? It feels like something simpler is hiding under all this ...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...