Evaluate this expression without using a calculator. ( 2 3 0 4 9 5 7 2 0 3 4 8 − 1 2 3 0 4 8 7 1 0 9 3 8 4 + 2 ) ( 1 2 3 0 4 8 7 1 0 9 3 8 4 − 2 3 0 4 9 5 7 2 0 3 4 8 + 1 ) − ( 1 + 2 3 0 4 9 5 7 2 0 3 4 8 − 1 2 3 0 4 8 7 1 0 9 3 8 4 ) ( 1 + 1 2 3 0 4 8 7 1 0 9 3 8 4 − 2 3 0 4 9 5 7 2 0 3 4 8 − 1 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I would suggest to insert c = a − b to it.
Since there are a lot of repetition, express the numbers like so:
x = 1
y = 2 3 0 4 9 5 7 2 0 3 4 8
z = 1 2 3 0 4 8 7 1 0 9 3 8 4
With these variables, you can rewrite the expression like so:
( y − z + x + 1 ) ( z − y + x ) − ( x + y − z ) ( x + z − y − 1 )
Multiplying this expression out yields 2 x and since x = 1 , the answer is 2 .
That's a great use of algebra!
Cannot see the question.The submission box is blocking it.
Problem Loading...
Note Loading...
Set Loading...
Let:
a = 2 3 0 4 9 5 7 2 0 3 4 8
b = 1 2 3 0 4 8 7 1 0 9 3 8 4
( a − b + 1 ) ( b − a + 1 ) − ( 1 + a − b ) ( 1 + b − a − 1 )
( a − b + 1 ) ( b − a + 1 ) − ( 1 + a − b ) ( b − a )
Expand them and we get:
2 a b − a 2 − b 2 − a + b + 2 − ( 2 a b − a 2 − b 2 + b − a )
= 2 a b − a 2 − b 2 − a + b + 2 − 2 a b + a 2 + b 2 − b + a )
= 2