How Long Can The Product Go!!!

Geometry Level pending

Suppose a 3 D 3\text{D} vector v = ( a , b , c ) \vec{v}=(a,b,c) with a , b , c 0 a,b,c\geq 0 makes angles α , β , γ \alpha,\beta,\gamma with the x , y , z x,y,z axes respectively. The direction cosines of v \vec{v} is then defined by the followings: cos α = a a 2 + b 2 + c 2 \cos \alpha=\dfrac{a}{\sqrt{a^2+b^2+c^2}} cos β = b a 2 + b 2 + c 2 \cos\beta=\dfrac{b}{\sqrt{a^2+b^2+c^2}} cos γ = c a 2 + b 2 + c 2 \cos \gamma=\dfrac{c}{\sqrt{a^2+b^2+c^2}} The maximum value of cos α cos β cos γ \cos\alpha \cos\beta\cos \gamma can be expressed as m n \dfrac{\sqrt{m}}{n} where ( m , n ) N 2 (m,n)\in\mathbb{N}^2 . Find the value of m + n m+n .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jubayer Nirjhor
Jun 18, 2014

Note that cos 2 α + cos 2 β + cos 2 γ = 1 \cos^2\alpha+\cos^2\beta+\cos^2\gamma=1 . Hence by AM-GM inequality, we have: cos 2 α cos 2 β cos 2 γ ( cos 2 α + cos 2 β + cos 2 γ 3 ) 3 = ( 1 3 ) 3 = 3 3 4 cos α cos β cos γ 3 3 4 = 3 9 \begin{aligned} &\cos^2 \alpha~\cos^2\beta~\cos^2\gamma ~~ &\le ~~\left(\dfrac{\cos^2\alpha+\cos^2\beta+\cos^2\gamma}{3}\right)^3 \\ &~ &=~~\left(\dfrac{1}{3}\right)^3 \\ &~&=~~\dfrac{3}{3^4} \\ &\therefore ~\cos\alpha~\cos\beta~\cos\gamma ~~&\le ~~\sqrt{\dfrac{3}{3^4}} \\ &~ &=~~ \dfrac{\sqrt 3}{9}\\ \end{aligned} Hence, m = 3 , n = 9 m=3, n=9 and the answer is m + n = 3 + 9 = 12 m+n=3+9=\fbox{12} .

Note: Equality occurs when cos 2 α = cos 2 β = cos 2 γ \cos^2\alpha=\cos^2\beta=\cos^2\gamma , that is, when a = b = c a=b=c and α = β = γ = ± arccos ( 1 3 ) \alpha=\beta=\gamma=\pm\arccos{\left(\dfrac{1}{\sqrt 3}\right)} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...