How many 6-digit numbers?

If we use 0 0 , 1 1 , 2 2 , 3 3 , 4 4 , and 5 5 , each of these integers only once, to make a valid 6-digit number, such that even integers are not next to each other and 0 0 and 5 5 must be next to each other, how many such 6-digit numbers can we make?


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Feb 19, 2020

There are four ways even integers can be arranged in a 6 6 -digit number so that they are not next to each other (e for even and o for odd): eoeoeo, oeoeoe, eoeooe, and eooeoe. To be a valid 6 6 -digit number, it cannot start with 0 0 . The possibilities are then:

eoeoeo 2 × 3 × 2 × 2 × 1 × 1 = 24 \text{eoeoeo} \rightarrow 2 \times 3 \times 2 \times 2 \times 1 \times 1 = 24

oeoeoe 3 × 3 × 2 × 2 × 1 × 1 = 36 \text{oeoeoe} \rightarrow 3 \times 3 \times 2 \times 2 \times 1 \times 1 = 36

eoeooe 2 × 3 × 2 × 2 × 1 × 1 = 24 \text{eoeooe} \rightarrow 2 \times 3 \times 2 \times 2 \times 1 \times 1 = 24

eooeoe 2 × 3 × 2 × 2 × 1 × 1 = 24 \text{eooeoe} \rightarrow 2 \times 3 \times 2 \times 2 \times 1 \times 1 = 24

For a total of 24 + 36 + 24 + 24 = 108 24 + 36 + 24 + 24 = 108 possibilities.

However, since 0 0 and 5 5 must be next to each other, we must also subtract out the possibilities where 0 0 and 5 5 are not next to each other. The possibilities are:

eoeoeo: \text{eoeoeo:}

  • eo0oe5 2 × 2 × 1 × 1 × 1 × 1 = 4 \text{eo0oe5} \rightarrow 2 \times 2 \times 1 \times 1 \times 1 \times 1 = 4
  • e5eo0o 2 × 1 × 1 × 2 × 1 × 1 = 4 \text{e5eo0o} \rightarrow 2 \times 1 \times 1 \times 2 \times 1 \times 1 = 4

oeoeoe: \text{oeoeoe:}

  • o0oe5e 2 × 1 × 1 × 2 × 1 × 1 = 4 \text{o0oe5e} \rightarrow 2 \times 1 \times 1 \times 2 \times 1 \times 1 = 4
  • 5eo0oe 1 × 2 × 2 × 1 × 1 × 1 = 4 \text{5eo0oe} \rightarrow 1 \times 2 \times 2 \times 1 \times 1 \times 1 = 4
  • 5eoeo0 1 × 2 × 2 × 1 × 1 × 1 = 4 \text{5eoeo0} \rightarrow 1 \times 2 \times 2 \times 1 \times 1 \times 1 = 4
  • oe5eo0 2 × 2 × 1 × 1 × 1 × 1 = 4 \text{oe5eo0} \rightarrow 2 \times 2 \times 1 \times 1 \times 1 \times 1 = 4

eoeooe: \text{eoeooe:}

  • eo0o5e 2 × 2 × 1 × 1 × 1 × 1 = 4 \text{eo0o5e} \rightarrow 2 \times 2 \times 1 \times 1 \times 1 \times 1 = 4
  • e5eoo0 2 × 1 × 1 × 2 × 1 × 1 = 4 \text{e5eoo0} \rightarrow 2 \times 1 \times 1 \times 2 \times 1 \times 1 = 4
  • eoe5o0 2 × 2 × 1 × 1 × 1 × 1 = 4 \text{eoe5o0} \rightarrow 2 \times 2 \times 1 \times 1 \times 1 \times 1 = 4

eooeoe: \text{eooeoe:}

  • e5o0oe 2 × 1 × 2 × 1 × 1 × 1 = 4 \text{e5o0oe} \rightarrow 2 \times 1 \times 2 \times 1 \times 1 \times 1 = 4
  • e5oeo0 2 × 1 × 2 × 1 × 1 × 1 = 4 \text{e5oeo0} \rightarrow 2 \times 1 \times 2 \times 1 \times 1 \times 1 = 4
  • eo5eo0 2 × 2 × 1 × 1 × 1 × 1 = 4 \text{eo5eo0} \rightarrow 2 \times 2 \times 1 \times 1 \times 1 \times 1 = 4

For a total of 12 4 = 48 12 \cdot 4 = 48 possible ways where 0 0 and 5 5 are not next to each other.

Therefore, with the given restrictions there are 108 48 = 60 108 - 48 = \boxed{60} possible 6 6 -digit numbers.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...