How many digits?

How many digits are there in 2 9998654 × 7 81359421 × 3 28467 ? 2^{9998654} \times 7^{81359421} \times 3^{28467} ?


The answer is 71780165.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Farhabi Mojib
Jul 29, 2014

Number of digits of a number n is equals (log n) +1.

l o g 2 9998654 log 2^{9998654} × \times 7 81359421 7^{81359421} × \times 3 28467 3^{28467} + 1 +1
= l o g 2 9998654 + l o g 7 81359421 + l o g 3 28467 + 1 =log 2^{9998654} + log 7^{81359421} + log 3^{28467} +1
= 9998654 × l o g 2 + 81359421 × l o g 7 + 28467 × l o g 3 + 1 =9998654 \times log 2 + 81359421 \times log 7 + 28467 \times log 3 +1
we know l o g 2 = . 301029995 , l o g 3 = . 477121254 , l o g 7 = . 84509804 log 2=.301029995, log 3 = .477121254, log 7 = .84509804


So the result is,
71780165 \boxed{71780165}

Chew-Seong Cheong
Jan 14, 2015

Yes, as Farhabi Mojib mentioned, the number of digits of a number n n is given by: f d ( n ) = log n + 1 f_d(n) = \lfloor \log{n} \rfloor + 1 , where \lfloor \space \rfloor is the greatest integer function. Therefore,

f d ( 2 9998654 × 7 81359421 × 3 28467 ) f_d(2^{9998654}\times 7^{81359421}\times 3^{28467})

= 9998654 log 2 + 81359421 log 7 + 28467 log 3 + 1 = \lfloor 9998654\log{2} + 81359421\log{7} + 28467\log{3} \rfloor + 1

= 9998654 × 0.301029996 + 81359421 × 0.84509804 = \lfloor 9998654\times 0.301029996 + 81359421\times 0.84509804 + 28467 × 0.477121255 + 1 \quad + 28467\times 0.477121255 \rfloor + 1

= 3009894.77 + 68756687.22 + 13582.21076 + 1 = \lfloor 3009894.77 + 68756687.22 + 13582.21076 \rfloor + 1

= 71780164.2 + 1 = 71780165 = \lfloor 71780164.2 \rfloor + 1 = \boxed {71780165}

Same here too

Mehul Chaturvedi - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...