How many digits are there in 2 9 9 9 8 6 5 4 × 7 8 1 3 5 9 4 2 1 × 3 2 8 4 6 7 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yes, as Farhabi Mojib mentioned, the number of digits of a number n is given by: f d ( n ) = ⌊ lo g n ⌋ + 1 , where ⌊ ⌋ is the greatest integer function. Therefore,
f d ( 2 9 9 9 8 6 5 4 × 7 8 1 3 5 9 4 2 1 × 3 2 8 4 6 7 )
= ⌊ 9 9 9 8 6 5 4 lo g 2 + 8 1 3 5 9 4 2 1 lo g 7 + 2 8 4 6 7 lo g 3 ⌋ + 1
= ⌊ 9 9 9 8 6 5 4 × 0 . 3 0 1 0 2 9 9 9 6 + 8 1 3 5 9 4 2 1 × 0 . 8 4 5 0 9 8 0 4 + 2 8 4 6 7 × 0 . 4 7 7 1 2 1 2 5 5 ⌋ + 1
= ⌊ 3 0 0 9 8 9 4 . 7 7 + 6 8 7 5 6 6 8 7 . 2 2 + 1 3 5 8 2 . 2 1 0 7 6 ⌋ + 1
= ⌊ 7 1 7 8 0 1 6 4 . 2 ⌋ + 1 = 7 1 7 8 0 1 6 5
Same here too
Problem Loading...
Note Loading...
Set Loading...
Number of digits of a number n is equals (log n) +1.
l o g 2 9 9 9 8 6 5 4 × 7 8 1 3 5 9 4 2 1 × 3 2 8 4 6 7 + 1
= l o g 2 9 9 9 8 6 5 4 + l o g 7 8 1 3 5 9 4 2 1 + l o g 3 2 8 4 6 7 + 1
= 9 9 9 8 6 5 4 × l o g 2 + 8 1 3 5 9 4 2 1 × l o g 7 + 2 8 4 6 7 × l o g 3 + 1
we know l o g 2 = . 3 0 1 0 2 9 9 9 5 , l o g 3 = . 4 7 7 1 2 1 2 5 4 , l o g 7 = . 8 4 5 0 9 8 0 4
So the result is,
7 1 7 8 0 1 6 5