How many distinct minimal primitive Pythagorean triangles are there with a hypotenuse of 2576450045?
To clarify: The use of "minimal" only refers to sides of the triangle being sorted from smallest to largest. Of course, at least one Pythagorean triangle exists with a hypotenuse of 2576450045. That was checked before posting this problem.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This is an interesting problem! As a side note: Given two positive integers x 1 = a 1 2 + b 1 2 and x 2 = a 2 2 + b 2 2 , the product of x 1 x 2 is also a sum of two squares, which is ( a 1 a 2 − b 1 b 2 ) 2 + ( a 1 b 2 − a 2 b 1 ) 2 . Thus, given 2576450045 has 7 prime factors of the form 4 n + 1 , we can fix one of the prime as one factor and choose 1, 2, 3, 4, 5 or 6 primes as the other factor, so that we can repeatedly use the fact that the product of two primes of the form 4 n + 1 can be represented as a sum of two squares, given that they can be represented as a sum of two squares respectively. This leads to i = 0 ∑ 6 ( i 6 ) = 2 6 combinations.
Log in to reply
Exactly what I meant by my hand waving explanation.
I reduced the amount of hand-waving in my explanation.
Problem Loading...
Note Loading...
Set Loading...
2 5 7 6 4 5 0 0 4 5 = 5 × 1 3 × 1 7 × 2 9 × 3 7 × 4 1 × 5 3
The factors are all 4 n + 1 primes. There are 7 distinct such primes. 2 6 = 6 4 .
See A006278 .
See Representation of integers as sums of two squares
∑ n = 0 m ( n m ) = 2 m
Fermat's theorem on sums of two squares states that "In additive number theory, Fermat's theorem on sums of two squares states that an odd prime p can be expressed as: p = x 2 + y 2 with x and y integers, if and only if p ≡ 1 ( m o d 4 ) ." The definition of a Pythagoroean prime is that it is such a prime. The Brahmagupta–Fibonacci identity "expresses the product of two sums of two squares as a sum of two squares in two different ways. Hence the set of all sums of two squares is closed under multiplication. Specifically, the identity says: ( a 2 + b 2 ) ( c 2 + d 2 ) = ( a d + b c ) 2 + ( a c − b d ) 2 = ( a d − b c ) 2 + ( a c + b d ) 2 . Since the primes need to used in pairs, one of the primes can not be counted. ∴
Here is all 64: 4 4 7 1 9 5 6 3 7 0 4 1 3 2 3 7 1 3 6 1 8 8 8 4 4 1 4 7 2 4 1 6 7 6 1 7 0 2 5 3 2 3 6 1 8 5 7 2 7 0 9 3 1 9 5 8 8 8 3 6 4 2 4 9 6 4 1 8 7 6 2 6 1 4 5 7 0 7 7 2 7 2 4 6 7 0 8 3 3 1 0 7 8 5 2 4 4 3 5 4 3 6 4 7 2 4 3 7 4 3 5 9 7 9 7 4 7 6 8 8 6 0 0 4 4 7 8 3 5 5 4 0 3 5 1 4 7 3 1 1 4 7 5 3 1 2 6 5 0 7 7 5 5 6 3 8 6 1 2 3 5 9 9 7 5 4 3 5 7 6 3 7 1 9 2 6 7 6 6 5 2 0 9 3 3 2 3 6 5 3 5 3 9 8 4 4 6 7 8 3 6 6 5 5 6 6 8 9 3 2 9 5 6 4 7 7 2 8 3 4 0 8 4 8 0 9 5 3 6 5 8 7 8 5 1 1 3 8 7 6 3 8 6 1 5 7 8 9 9 7 8 9 7 8 2 7 2 0 4 9 4 7 2 7 8 2 7 6 9 6 8 6 8 0 6 3 6 9 7 8 9 2 9 0 8 4 9 8 3 0 3 5 8 9 3 1 0 1 3 1 1 7 5 2 4 1 0 1 4 4 9 2 2 1 3 1 0 6 2 9 5 9 8 8 3 1 0 9 7 9 7 0 6 4 4 1 1 2 7 4 0 0 2 6 7 1 1 6 6 7 5 1 2 4 3 1 2 0 1 0 0 4 4 7 6 1 2 6 8 4 9 3 3 8 7 1 2 7 7 3 5 2 1 9 6 1 2 9 0 7 9 9 4 1 3 1 3 1 0 7 0 0 7 4 7 1 3 2 3 9 2 7 1 6 4 1 3 5 6 8 6 2 7 7 3 1 3 7 6 3 1 2 5 9 6 1 3 9 7 9 6 9 8 0 4 1 4 3 0 1 0 7 0 8 3 1 4 4 2 9 8 3 1 5 6 1 4 6 2 0 2 5 3 5 6 1 5 4 5 3 2 5 1 7 3 1 5 4 6 4 1 4 7 7 3 1 5 8 0 2 6 3 7 9 7 1 6 1 0 5 4 5 8 0 4 1 6 3 5 8 8 4 8 5 3 1 6 4 5 0 4 0 6 8 4 1 6 7 7 5 8 9 6 8 4 1 6 8 6 2 0 3 4 7 6 1 7 0 5 5 5 0 9 2 4 1 7 0 6 6 7 1 4 1 3 1 7 3 0 9 7 8 1 1 6 1 7 7 9 1 6 7 7 3 3 1 7 9 7 6 6 7 4 6 7 2 5 7 6 0 6 1 9 1 6 2 5 7 5 4 8 7 6 8 4 2 5 7 2 8 4 8 1 1 7 2 5 7 2 2 3 9 2 4 3 2 5 7 0 8 1 8 6 7 7 2 5 6 9 7 4 7 1 2 4 2 5 6 8 9 9 2 5 2 3 2 5 6 4 3 2 7 1 5 7 2 5 6 3 1 4 9 4 3 6 2 5 6 2 0 0 2 4 4 4 2 5 5 7 6 3 7 0 6 7 2 5 5 1 9 6 4 0 4 3 2 5 4 9 1 0 7 6 0 4 2 5 3 1 9 3 0 9 9 7 2 5 3 1 6 5 3 7 9 6 2 5 2 4 5 0 9 1 9 6 2 5 2 1 0 8 1 5 6 4 2 5 1 5 6 5 6 8 3 6 2 5 0 5 6 7 1 4 7 6 2 4 9 6 4 1 3 4 9 3 2 4 9 2 5 6 2 7 6 4 2 4 9 2 1 8 3 8 8 3 2 4 8 5 5 4 0 9 1 7 2 4 8 2 5 2 2 8 2 7 2 4 5 7 8 0 8 4 3 7 2 4 4 5 9 6 5 1 1 6 2 4 3 1 8 0 1 3 1 6 2 4 2 8 1 2 2 0 0 4 2 4 1 4 9 5 3 6 5 3 2 3 9 5 9 8 8 0 4 3 2 3 8 7 4 1 5 4 7 7 2 3 8 3 2 3 1 5 6 3 2 3 8 1 5 4 0 5 2 4 2 3 6 8 9 0 0 1 0 7 2 3 6 8 3 1 1 7 1 6 2 3 4 6 9 5 7 8 4 4 2 3 3 0 7 8 4 2 6 7 2 3 1 6 6 9 2 3 5 6 2 2 9 7 1 2 5 6 7 6 2 2 7 9 4 0 4 1 0 7 2 2 4 2 5 4 7 5 1 6 2 2 3 7 5 1 3 3 9 7 2 2 2 9 7 8 2 8 8 4 2 2 1 8 1 4 3 0 0 4 2 2 1 0 2 7 4 1 2 3 2 1 9 0 2 0 9 6 3 6 2 1 7 8 0 4 0 0 5 3 2 1 6 4 2 0 3 1 4 7 2 1 4 3 1 0 2 5 5 6 2 1 3 4 4 5 4 1 3 3 2 1 2 1 4 5 6 2 6 7 2 0 6 1 5 6 8 5 6 4 2 0 6 0 7 5 1 3 6 4 2 0 3 4 9 1 0 6 0 4 2 0 1 1 0 2 8 8 5 3 1 9 9 0 4 7 1 1 9 6 1 9 8 2 9 1 0 9 8 7 1 9 5 5 4 5 0 7 6 3 1 9 4 8 0 2 7 8 9 3 1 9 3 1 1 1 1 3 0 7 1 9 3 0 1 2 1 1 1 6 1 9 0 8 3 5 2 5 8 7 1 8 6 3 5 0 6 6 4 4 1 8 4 5 6 6 6 9 5 6 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5 2 5 7 6 4 5 0 0 4 5