How many ice cubes?

Level 2

How many ice cubes do you need to cool down 200 g 200g water from 2 5 C 25^{\circ}C to 5 C 5^{\circ}C , if each cube is 6 , 4 c m 3 6,4cm^3 and 5 C -5^{\circ}C ?(You drop them into the water)
Here are some constants:
c w = 4200 J k g K c_w=4200\frac{J}{kg\cdot K}
c i = 2100 J k g K c_i=2100\frac{J}{kg\cdot K}
L i = 3.3 1 0 5 J k g L_i=3.3\cdot 10^5\frac{J}{kg}
ρ i = 900 k g m 3 \rho _i=900\frac{kg}{m^3}

If your answer is in x . y \overline{x.y} format, where y < 2 y<2 , then enter x x , else if y 2 y\geq2 enter x + 1 x+1 .

A. P. Rimkevics -Physical task collection: 656(new)


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

My "markup language": V- the volume of one ice cube, N- the number of ice cubes, w=water and i=ice. In this picture you can see the processes In this picture you can see the processes

Q w = Q i 1 + Q i 2 + Q m Q_w=Q_{i1}+Q_{i2}+Q_m c w m w Δ t 1 = c i m i Δ t 2 + c w m i Δ t 3 + L i m i c_wm_w\Delta t_1=c_im_i\Delta t_2+c_wm_i\Delta t_3+L_im_i c w m w Δ t 1 = m i ( c i Δ t 2 + c w Δ t 3 + L i ) c_wm_w\Delta t_1=m_i(c_i\Delta t_2+c_w\Delta t_3+L_i) c w m w Δ t 1 c i Δ t 2 + c w Δ t 3 + L i = m i \frac{c_wm_w\Delta t_1}{c_i\Delta t_2+c_w\Delta t_3+L_i}=m_i ρ i V i = c w m w Δ t 1 c i Δ t 2 + c w Δ t 3 + L i \rho _iV_i=\frac{c_wm_w\Delta t_1}{c_i\Delta t_2+c_w\Delta t_3+L_i} ρ i V N = c w m w Δ t 1 c i Δ t 2 + c w Δ t 3 + L i \rho _iVN=\frac{c_wm_w\Delta t_1}{c_i\Delta t_2+c_w\Delta t_3+L_i} N = c w m w Δ t 1 ρ i V ( c i Δ t 2 + c w Δ t 3 + L i ) N=\frac{c_wm_w\Delta t_1}{\rho _iV(c_i\Delta t_2+c_w\Delta t_3+L_i)} N = 4200 0.2 20 900 6.4 1 0 6 ( 2100 5 + 4200 5 + 3.3 1 0 5 ) N=\frac{4200\cdot 0.2\cdot 20}{900\cdot 6.4\cdot 10^{-6}(2100\cdot 5+4200\cdot 5+3.3\cdot 10^5)} N = 16800 5 , 76 1 0 3 361500 8 N=\frac{16800}{5,76\cdot 10^{-3}\cdot 361500}\approx 8

P.S. N 1 N^{\circ}1 If somebody want to say N > 8 N>8 : L i = 3.334 1 0 5 J k g L_i=3.334\cdot 10^5\frac{J}{kg} , therefore N < 8 N<8 .
P.S. N 2 N^{\circ}2 I doubt anyone likes to read Soviet books, but I would like note that in the book the solution is 9. I think this is only a typo.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...