Try Tackling This Radical Inequality!

Algebra Level 5

1 5 x + 1 + 1 x 2 3 x + 4 x + 3 2 ( x + 1 ) \large \frac{1}{\sqrt{5x+1}}+\frac{1}{\sqrt{x^2-3x+4}}\geq\frac{x+3}{2(x+1)} How many integer x x satisfy the inequality above

0 1 2 3 4 More than 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pi Han Goh
Sep 6, 2016

Note that we must have 5 x + 1 > 0 5x + 1>0 and x 2 3 x + 4 > 0 x^2-3x+4> 0 , otherwise the radical expressions are non-real numbers, so x > 1 5 x>-\dfrac15 . It's trivial to show that x = 0 x = 0 is a solution. What's left to do is to find the positive integer roots of x x satisfying the given inequality.

The inequality can be rearranged to

2 5 x + 1 + 2 x 2 3 x + 4 1 + 2 x + 1 > 1 x > 0 \dfrac2{\sqrt{5x+1}} + \dfrac2{\sqrt{x^2-3x+4}} \geq 1 + \dfrac2{x+1} > 1 \qquad \qquad x> 0

Or equivalently,

1 2 ( 1 5 x + 1 + 1 x 2 3 x + 4 ) > 1 4 x > 0 \dfrac12 \left( \dfrac1{\sqrt{5x+1}} + \dfrac1{\sqrt{x^2-3x+4}} \right) > \dfrac14 \qquad \qquad x> 0

Since both 1 5 x + 1 \dfrac1{\sqrt{5x+1}} and 1 x 2 3 x + 4 \dfrac1{\sqrt{x^2-3x+4}} are strictly positive numbers for x > 0 x>0 , we can apply the Power mean inequality :

Q M ( 1 5 x + 1 , 1 x 2 3 x + 4 ) A M ( 1 5 x + 1 , 1 x 2 3 x + 4 ) > 1 4 1 / ( 5 x + 1 ) + 1 / ( x 2 3 x + 4 ) 2 > 1 4 1 5 x + 1 + 1 x 2 3 x + 4 > 1 8 5 x 3 22 x 2 + x 36 < 0 \begin{aligned} && QM \left(\dfrac1{\sqrt{5x+1}} , \dfrac1{\sqrt{x^2-3x+4}} \right) \geq AM \left(\dfrac1{\sqrt{5x+1}} , \dfrac1{\sqrt{x^2-3x+4}} \right) > \dfrac14 \\ && \Leftrightarrow \sqrt{ \dfrac{1/(5x+1) + 1/(x^2-3x+4) }2 } > \dfrac14 \\ && \Leftrightarrow \dfrac1{5x+1} + \dfrac1{x^2-3x+ 4} > \dfrac18 \\ && \Leftrightarrow 5x^3 - 22x^2 + x - 36 < 0 \\ \end{aligned}

Hence, the positive values that we're looking are bounded under the inequality f ( x ) < 0 f(x) < 0 , where f ( x ) = 5 x 3 22 x 2 + x 36 f(x) = 5x^3 - 22x^2 + x - 36 . Since the cubic discriminant of this polynomial is easily computed to be a negative value, then it has precisely one real root. Because f ( 4 ) < 0 < f ( 5 ) f(4) < 0 < f(5) , we know by intermediate value theorem that f ( x ) f(x) only has a real root in the interval ( 4 , 5 ) (4,5) .

In other words, the only potential positive values of x x that satisfy the inequality in question are x = 1 , 2 , 3 , 4 x= 1,2,3,4 . Trial and error shows that only x = 4 x=4 does not satisfy the original inequality. Thus, the only solutions are x = 0 , 1 , 2 , 3 x = 0,1,2,3 .

I FORGOT THE ZERO. I FORGOT THE ZERO AS AN INTEGER, I WOULD HAVE GOT IT CORRECT. OH MY GOSH. I AM SO ANGRY.

Rico Lee - 4 years, 8 months ago

Nice solution! Originally, this problem asked me to find real x x satisfy the inequality so I had to use algebraic manipulations to solve

P C - 4 years, 9 months ago
P C
Sep 5, 2016

Here we go.

First, the constrain of x x is x > 1 5 x>\frac{-1}{5} and due to this, R H S > 0 RHS>0 . The inequality can be written as 1 5 x + 1 1 x + 1 + 1 x 2 3 x + 4 1 2 0 \frac{1}{\sqrt{5x+1}}-\frac{1}{x+1}+\frac{1}{\sqrt{x^2-3x+4}}-\frac{1}{2}\geq 0 x + 1 5 x + 1 ( x + 1 ) 5 x + 1 + 2 x 2 3 x + 4 2 x 2 3 x + 4 0 \Leftrightarrow\frac{x+1-\sqrt{5x+1}}{(x+1)\sqrt{5x+1}}+\frac{2-\sqrt{x^2-3x+4}}{2\sqrt{x^2-3x+4}}\geq 0 x 2 3 x ( x + 1 ) 5 x + 1 ( x + 1 + 5 x + 1 ) x 2 3 x 2 x 2 3 x + 4 ( x 2 3 x + 4 + 2 ) 0 \Leftrightarrow\frac{x^2-3x}{(x+1)\sqrt{5x+1}(x+1+\sqrt{5x+1})}-\frac{x^2-3x}{2\sqrt{x^2-3x+4}(\sqrt{x^2-3x+4}+2)}\geq 0 ( x 2 3 x ) [ 2 x 2 3 x + 4 ( x 2 3 x + 4 + 2 ) ( x + 1 ) 5 x + 1 ( x + 1 + 5 x + 1 ) ( x + 1 ) 5 x + 1 ( x + 1 + 5 x + 1 ) . 2 x 2 3 x + 4 ( x 2 3 x + 4 + 2 ) ] 0 \Leftrightarrow (x^2-3x)\bigg[\frac{2\sqrt{x^2-3x+4}(\sqrt{x^2-3x+4}+2)-(x+1)\sqrt{5x+1}(x+1+\sqrt{5x+1})}{(x+1)\sqrt{5x+1}(x+1+\sqrt{5x+1}).2\sqrt{x^2-3x+4}(\sqrt{x^2-3x+4}+2)}\bigg]\geq 0 Since ( x + 1 ) 5 x + 1 ( x + 1 + 5 x + 1 ) . 2 x 2 3 x + 4 ( x 2 3 x + 4 + 2 ) > 0 ; x > 1 5 (x+1)\sqrt{5x+1}(x+1+\sqrt{5x+1}).2\sqrt{x^2-3x+4}(\sqrt{x^2-3x+4}+2)>0; \forall x>\frac{-1}{5} , we can multiply both side to clear it out. It left us with ( x 2 3 x ) [ 2 x 2 3 x + 4 ( x 2 3 x + 4 + 2 ) ( x + 1 ) 5 x + 1 ( x + 1 + 5 x + 1 ) ] 0 (x^2-3x)\big[2\sqrt{x^2-3x+4}(\sqrt{x^2-3x+4}+2)-(x+1)\sqrt{5x+1}(x+1+\sqrt{5x+1})\big]\geq 0 ( x 2 3 x ) [ 4 x 2 3 x + 4 ( x + 1 ) 2 5 x + 1 3 x 2 12 x + 7 ] 0 \Leftrightarrow (x^2-3x)\big[4\sqrt{x^2-3x+4}-(x+1)^2\sqrt{5x+1}-3x^2-12x+7\big]\geq 0 ( x 2 3 x ) { 4 [ x 2 3 x + 4 ( x + 1 ) ] + ( x + 1 ) 2 ( 2 5 x + 1 ) 5 x 2 12 x + 9 } 0 \Leftrightarrow (x^2-3x)\big\{4[\sqrt{x^2-3x+4}-(x+1)]+(x+1)^2(2-\sqrt{5x+1})-5x^2-12x+9\big\}\geq 0 ( x 2 3 x ) ( 3 5 x ) [ 4 x + 1 + x 2 3 x + 4 + ( x + 1 ) 2 2 + 5 x + 1 + x + 3 ] 0 \Leftrightarrow (x^2-3x)(3-5x)\bigg[\frac{4}{x+1+\sqrt{x^2-3x+4}}+\frac{(x+1)^2}{2+\sqrt{5x+1}}+x+3\bigg]\geq 0 We see that 4 x + 1 + x 2 3 x + 4 + ( x + 1 ) 2 2 + 5 x + 1 + x + 3 > 0 ; x > 1 5 \frac{4}{x+1+\sqrt{x^2-3x+4}}+\frac{(x+1)^2}{2+\sqrt{5x+1}}+x+3>0;\forall x>\frac{-1}{5} so what we have left is ( x 2 3 x ) ( 3 5 x ) 0 (x^2-3x)(3-5x)\geq 0 . The inequality gives x ( 1 5 ; 0 ] [ 3 5 ; 3 ] x\in \big(\frac{-1}{5};0\big]\cup\big[\frac{3}{5};3\big] after solving and combining with the constrain. So there are 4 intergers 0 ; 1 ; 2 ; 3 0;1;2;3 satisfy the problem

Mark Hennings
Sep 8, 2016

We must have integer x 0 x \ge 0 for the inequality to be possible. Note that 1 5 x + 1 \frac{1}{\sqrt{5x+1}} and 1 x 2 3 x + 4 \frac{1}{\sqrt{x^2 - 3x + 4}} are decreasing functions of x 2 x \ge 2 , while x + 3 2 ( x + 1 ) \frac{x+3}{2(x+1)} is a decreasing function of x 0 x \ge 0 tending to 1 2 \frac12 as x x \to \infty . Write f ( x ) = 1 5 x + 1 + 1 x 2 3 x + 4 x + 3 2 ( x + 1 ) f(x) \; =\; \frac{1}{\sqrt{5x+1}} + \frac{1}{\sqrt{x^2 - 3x + 4}} - \frac{x+3}{2(x+1)} We can calculate that f ( 0 ) = f ( 3 ) = 0 f(0) = f(3) = 0 , while f ( 1 ) , f ( 2 ) > 0 > f ( 4 ) f(1),f(2) > 0 > f(4) . Since f ( x ) 1 26 + 1 14 1 2 < 0 x 5 f(x) \; \le \; \frac{1}{\sqrt{26}} + \frac{1}{\sqrt{14}} - \frac12 < 0 \qquad \forall x \ge 5 we see that f ( x ) 0 f(x) \ge 0 precisely when x = 0 , 1 , 2 , 3 x = 0,1,2,3 , making the answer 4 \boxed{4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...