Minimum Distances

Geometry Level 2

Given that a straight line in the x y xy -plane passes through the point ( 3 , 48 ) (3,48) in the first quadrant and intersects the positive x x - and y y -axes at points P P and Q Q respectively. Let O O designate the origin.

Find the minimum value of O P × O Q OP\times OQ .


The answer is 576.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sanjeet Raria
Dec 25, 2014

Consider the image. From the properties of similar triangle we can say that y 3 = 48 x ( H o w ) \frac{y}{3}= \frac{48}{x}\quad(How) x y = 48 × 3 \Rightarrow xy=48×3 O P O Q = ( 3 + x ) ( 48 + y ) = 48 ( x + 9 x + 6 ) \Rightarrow OP•OQ=(3+x)(48+y)=48(x+\frac{9}{x}+6)

Now from AM-GM, as x x is always positive, the minimum value of ( x + 9 x ) (x+\frac{9}{x}) is 6 (How).

Hence minimum value of O P O Q i s 48 ( 6 + 6 ) = 576 OP•OQ \space is \space 48(6+6)=\boxed{576}

U Z - 6 years, 5 months ago

Love to solve this problem again and again , the question you asked in JOMO 10 , i too love A.M G.M

U Z - 6 years, 5 months ago

Log in to reply

Just verifying is the answer 24?

Saakshi Porwal - 3 years, 6 months ago

Wonderful solution !!

Amizhthni P.R.K - 2 years, 2 months ago

Can someone explain how you use the AM-GM inequality to minimize (x+9/x)? I used calculus to solve this but would like to understand the non-calculus method.

Jasper Bernes - 5 years, 4 months ago

Log in to reply

Aren't positive numbers also real positive line why paying concentration only on the whole numbers?

Daniel Dezyner - 2 years, 4 months ago

Let O P = a OP=a and O Q = b OQ=b . By definition, the line that passes through P = ( a , 0 ) P=(a,0) and Q = ( 0 , b ) Q=(0,b) is called the symmetric equation of the line, and it is: x a + y b = 1 \dfrac{x}{a}+\dfrac{y}{b}=1 . We know that it passes through ( 3 , 48 ) (3,48) , hence: 3 a + 48 b = 1 \dfrac{3}{a}+\dfrac{48}{b}=1

Applying AM-GM inequality we get:

3 a + 48 b 2 3 a × 48 b \dfrac{\dfrac{3}{a}+\dfrac{48}{b}}{2} \geq \sqrt{\dfrac{3}{a} \times \dfrac{48}{b}}

1 2 144 a b \dfrac{1}{2} \geq \sqrt{\dfrac{144}{ab}}

1 4 144 a b \dfrac{1}{4} \geq \dfrac{144}{ab}

a b 576 ab \geq \boxed{576}

Cool, especially with the LaTeX.... Not many people use LaTeX well in solutions...

Aditya Raut - 6 years, 5 months ago

L e t A ( 3 , 48 ) b e t h e p o i n t t h a t l i e s o n t h e r e q d . l i n e . N o w , l e t t h e e q u a t i o n o f t h e l i n e b e y = m x + c , w h e r e m i s t h e s l o p e o f t h e l i n e , a n d c i s t h e Y i n t e r c e p t ( O Q ) . S l o p e o f a l i n e i s g i v e n b y , y y 1 x x 1 , w h e r e ( x 1 , y 1 ) i s a n y p o i n t o n t h e l i n e . I n o u r c a s e , m = y 48 x 3 . U s i n g t h e v a l u e , y = ( y 48 x 3 ) x + c x y 3 y = x y 48 x + c x 3 c A r r a n g i n g t h e t e r m s , 48 x 3 y = c x 3 c . N o w t o f i n d t h e x i n t e r c e p t ( O P ) , p u t y = 0 48 x 0 = c x 3 c x = 3 c c 48 O P × O Q = 3 c 2 c 48 T o f i n d t h e m i n i m u m o f O P × O Q , i t s d e r i v a t i v e = 0 d d c ( O P × O Q ) = 0 d d c 3 c 2 c 48 = 0 d d c c 2 ( c 48 ) 1 c 2 d d c ( c 48 ) 1 + ( c 48 ) 1 d d c c 2 = 0 c 2 ( c 48 ) 2 + 2 c c 48 = 0 S o l v i n g t h i s e q u a t i o n c c o m e s o u t t o b e 0 o r 96 S i n c e , i t i s g i v e n t h a t i t c u t s p o s i t i v e i n t e r c e p t s , c = 0 i s r e j e c t e d . S o c = 96 , w i l l g i v e t h e m i n i m u m v a l u e o f O P × O Q O P × O Q m i n . = 3 × 96 × 96 96 48 = 576 Let\quad A(3,48)\quad be\quad the\quad point\quad that\quad lies\quad on\quad the\quad reqd.\quad line.\\ \\ Now,\quad let\quad the\quad equation\quad of\quad the\quad line\quad be\quad y\quad =\quad mx+c,\\ where\quad 'm'\quad is\quad the\quad slope\quad of\quad the\quad line,\quad and\quad 'c'\quad is\quad the\\ Y-intercept(OQ).\\ Slope\quad of\quad a\quad line\quad is\quad given\quad by,\quad \frac { y-{ y }_{ 1 } }{ x-{ x }_{ 1 } } ,\quad where\quad ({ x }_{ 1 }{ ,y }_{ 1 })\quad is\\ any\quad point\quad on\quad the\quad line.\\ \\ In\quad our\quad case,\quad m\quad =\quad \frac { y-48 }{ x-3 } .\\ Using\quad the\quad value,\quad y\quad =\quad (\frac { y-48 }{ x-3 } )x+c\\ xy-3y\quad =\quad \quad xy-48x+cx-3c\\ Arranging\quad the\quad terms,\\ 48x-3y\quad =\quad cx-3c.\\ \\ Now\quad to\quad find\quad the\quad x-intercept(OP),\quad put\quad y=0\\ 48x-0\quad =\quad cx-3c\\ x\quad =\quad \frac { 3c }{ c-48 } \\ OP\times OQ\quad =\quad \frac { 3{ c }^{ 2 } }{ c-48 } \\ To\quad find\quad the\quad minimum\quad of\quad OP\times OQ,\\ it's\quad derivative\quad =\quad 0\\ \\ \frac { d }{ dc } (OP\times OQ)\quad =\quad 0\\ \\ \frac { d }{ dc } \frac { 3{ c }^{ 2 } }{ c-48 } \quad =\quad 0\\ \\ \frac { d }{ dc } { c }^{ 2 }({ c-48) }^{ -1 }\\ \\ { c }^{ 2 }\frac { d }{ dc } { (c-48) }^{ -1 }+{ (c-48) }^{ -1 }\frac { d }{ dc } { c }^{ 2 }\quad =\quad 0\\ \frac { -{ c }^{ 2 } }{ { (c-48) }^{ 2 } } +\frac { 2c }{ c-48 } \quad =\quad 0\\ Solving\quad this\quad equation\quad 'c'\quad comes\quad out\quad to\quad be\quad 0\quad or\quad 96\\ Since,\quad it\quad is\quad given\quad that\quad it\quad cuts\quad positive\quad intercepts,\\ c=0\quad is\quad rejected.\\ \\ So\quad c=96,\quad will\quad give\quad the\quad minimum\quad value\quad of\quad OP\times OQ\\ { OP\times OQ }_{ min. }\quad =\quad \frac { 3\quad \times \quad 96\quad \times \quad 96 }{ 96-48 } \\ \quad =\quad 576

CHEERS!:):)

What is the maximum value of OP x OQ ? Ed Gray

Edwin Gray - 3 years, 5 months ago
Andre Bourque
Jun 15, 2018

Suppose the line takes the form a x + b y = c . ax + by = c. Then we know c = 3 a + 48 b . c = 3a + 48b. Solving for our intercepts we get

(0, 3 a b + 48 \frac{3a}{b} + 48 ) and (3 + 48 b a \frac{48b}{a} , 0).

Thus OP * OQ = ( 3 a b + 48 ) ( 48 b a + 3 ) ( 2 48 3 ) 2 = 576 (\frac{3a}{b} + 48) * (\frac{48b}{a} + 3) \ge (2 * \sqrt{48*3})^2 = 576 by Cauchy-Schwarz.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...