Given that a straight line in the x y -plane passes through the point ( 3 , 4 8 ) in the first quadrant and intersects the positive x - and y -axes at points P and Q respectively. Let O designate the origin.
Find the minimum value of O P × O Q .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Love to solve this problem again and again , the question you asked in JOMO 10 , i too love A.M G.M
Wonderful solution !!
Can someone explain how you use the AM-GM inequality to minimize (x+9/x)? I used calculus to solve this but would like to understand the non-calculus method.
Log in to reply
Aren't positive numbers also real positive line why paying concentration only on the whole numbers?
Let O P = a and O Q = b . By definition, the line that passes through P = ( a , 0 ) and Q = ( 0 , b ) is called the symmetric equation of the line, and it is: a x + b y = 1 . We know that it passes through ( 3 , 4 8 ) , hence: a 3 + b 4 8 = 1
Applying AM-GM inequality we get:
2 a 3 + b 4 8 ≥ a 3 × b 4 8
2 1 ≥ a b 1 4 4
4 1 ≥ a b 1 4 4
a b ≥ 5 7 6
Cool, especially with the LaTeX.... Not many people use LaTeX well in solutions...
L e t A ( 3 , 4 8 ) b e t h e p o i n t t h a t l i e s o n t h e r e q d . l i n e . N o w , l e t t h e e q u a t i o n o f t h e l i n e b e y = m x + c , w h e r e ′ m ′ i s t h e s l o p e o f t h e l i n e , a n d ′ c ′ i s t h e Y − i n t e r c e p t ( O Q ) . S l o p e o f a l i n e i s g i v e n b y , x − x 1 y − y 1 , w h e r e ( x 1 , y 1 ) i s a n y p o i n t o n t h e l i n e . I n o u r c a s e , m = x − 3 y − 4 8 . U s i n g t h e v a l u e , y = ( x − 3 y − 4 8 ) x + c x y − 3 y = x y − 4 8 x + c x − 3 c A r r a n g i n g t h e t e r m s , 4 8 x − 3 y = c x − 3 c . N o w t o f i n d t h e x − i n t e r c e p t ( O P ) , p u t y = 0 4 8 x − 0 = c x − 3 c x = c − 4 8 3 c O P × O Q = c − 4 8 3 c 2 T o f i n d t h e m i n i m u m o f O P × O Q , i t ′ s d e r i v a t i v e = 0 d c d ( O P × O Q ) = 0 d c d c − 4 8 3 c 2 = 0 d c d c 2 ( c − 4 8 ) − 1 c 2 d c d ( c − 4 8 ) − 1 + ( c − 4 8 ) − 1 d c d c 2 = 0 ( c − 4 8 ) 2 − c 2 + c − 4 8 2 c = 0 S o l v i n g t h i s e q u a t i o n ′ c ′ c o m e s o u t t o b e 0 o r 9 6 S i n c e , i t i s g i v e n t h a t i t c u t s p o s i t i v e i n t e r c e p t s , c = 0 i s r e j e c t e d . S o c = 9 6 , w i l l g i v e t h e m i n i m u m v a l u e o f O P × O Q O P × O Q m i n . = 9 6 − 4 8 3 × 9 6 × 9 6 = 5 7 6
CHEERS!:):)
What is the maximum value of OP x OQ ? Ed Gray
Suppose the line takes the form a x + b y = c . Then we know c = 3 a + 4 8 b . Solving for our intercepts we get
(0, b 3 a + 4 8 ) and (3 + a 4 8 b , 0).
Thus OP * OQ = ( b 3 a + 4 8 ) ∗ ( a 4 8 b + 3 ) ≥ ( 2 ∗ 4 8 ∗ 3 ) 2 = 5 7 6 by Cauchy-Schwarz.
Problem Loading...
Note Loading...
Set Loading...
Now from AM-GM, as x is always positive, the minimum value of ( x + x 9 ) is 6 (How).
Hence minimum value of O P • O Q i s 4 8 ( 6 + 6 ) = 5 7 6