Not all are 9's

I have a nine digits positive integer which shows the following property 9 × d 1 d 2 d 3 d 8 d 9 = d 9 d 8 d 7 d 2 d 1 9\times \overline{d_1d_2d_3\cdots d_8d_9}=\overline{d_9d_8d_7\cdots d_2d_1} that is when it's multiplied by 9, the digits are reversed. Find the largest reversed number .


The answer is 989999901.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Nov 13, 2018

The general formula for such n n digits number can be written as 99 ( 1 0 n 2 1 ) 99(10^{n-2}-1) Set n = 9 n =9

The answer is 11 ( 1 0 7 1 ) 9 = 9899999901 11\cdot (10^7-1)\cdot 9= 9899999901 .

Additional facts 99 ( 1 0 n 2 1 ) 11 ( 1 0 n 2 1 ) = 88 ( 1 0 n 2 1 ) = 8 11 ( 1 0 n 2 1 ) , n > 3 99(10^{n-2}-1) -11(10^{n-2}-1) = 88(10^{n-2}-1) = 8\cdot 11(10^{n-2}-1), \ \ n> 3

Generalization: Let us try to figure out the smallest possible number such b 0 b 1 b n 1 b n × 9 b n b n 1 b 1 b 0 \begin{array} {ccccc} \large & & b_0 & b_1 \cdots b_{n-1} & b_n \\ \large \times & & & &9 \\ \hline \large & & b_n & b_{n-1} \cdots b_1 & b_0 &\end{array} For a single digit number 9 b 0 = b 0 b 0 = 0 9\cdot b_0 = b_0\implies b_0=0 . On the similar manner we can observe that for two and three digit number { 9 ( 10 b 0 + b 1 ) = 10 b 1 + b 0 89 b 0 = 90 b 1 9 ( 100 b 0 + 10 b 1 + b 2 ) = 100 b 2 + 10 b 1 + b 0 899 b 0 + 80 b 1 = 91 b 2 \begin{cases} 9(10b_0 + b_1) = 10b_1 +b_0 \Rightarrow 89b_0 = 90b_1\\ 9(100b_0+10b_1+b_2) = 100b_2+10b_1+b_0 \\ \Rightarrow 899b_0 + 80b_1 =91b_2 \\ \end{cases} For the above two cases we cannot find such b 0 , b 1 , b 2 Z + < 10 b_0 ,b_1 ,b_2\in\mathbb Z^+ < 10 . Trying for the 4 digit number we can observe that 8999 b 0 + 890 b 1 10 b 2 991 b 3 = 0 8999b_0 + 890b_1 -10b_2 - 991b_3 =0 Clearly b 0 = 1 b_0=1 implying b 3 = 9 b_3=9 from above cryptogram set and 890 b 1 10 b 2 = 80 890b_1 -10b_2 =-80 and hence we obtain b 1 = 0 , b 2 = 8 b_1=0 ,b_2=8 and 1089 1089 our smallest number.

Note that 11 99 = 11 ( 1 0 4 2 1 ) = 1089 11 999 = 11 ( 1 0 5 3 1 ) = 10989 11 9999 = 11 ( 1 0 6 4 1 ) = 109989 \begin{aligned} 11\cdot 99= 11(10^{4-2}-1) =1089\\ 11\cdot 999=11(10^{5-3}-1) = 10989 \\11\cdot 9999 = 11(10^{6-4}-1)= 109989 \end{aligned} from the above pattern 11 ( 1 0 n 2 1 ) 11(10^{n-2}-1) , we can easily determine the smallest nth digit number for n 4 n\geq 4 such property holds true. For 5 digit such number we set n = 5 n=5 giving us 10989 10989 . Reversing the digit we further observe that 9801 = 99 99 = 99 ( 1 0 4 2 1 ) 98901 = 99 999 = 99 ( 1 0 5 2 1 ) 989901 = 99 9999 = 99 ( 1 0 6 2 1 ) \begin{aligned} 9801 & =99\cdot 99 = 99(10^{4-2}-1) \\ 98901 & = 99\cdot 999= 99(10^{5-2}-1) \\ 989901 & =99\cdot 9999 = 99(10^{6-2}-1) \end{aligned} And we have then 99 ( 1 0 n 2 1 ) ÷ 11 ( 1 0 n 2 1 ) = 9. 99\cdot(10^{n-2}-1) ÷ 11(10^{n-2}-1) = 9. If we perform the subtraction we can observe that 99 ( 1 0 n 1 ) 11 ( 1 0 n 1 ) = 88 ( 1 0 n 2 1 ) = 8 11 ( 1 0 n 2 1 ) 99(10^n-1) -11(10^n-1) = 88(10^{n-2}-1) = 8\cdot 11(10^{n-2}-1) set n = 2 , 3 , 4 , n= 2,3,4,\cdots then 8 11 ( 1 0 4 2 1 ) = 8712 8 11 ( 1 0 5 2 1 ) = 87912 8 11 ( 1 0 6 2 1 ) = 899712 \begin{aligned} 8\cdot 11(10^{4-2}-1) = 8712 \\ 8\cdot 11(10^{5-2}-1) = \boxed{87912}\\ 8\cdot 11(10^{6-2}-1) = 899712 \end{aligned} On reversing these numbers we can find the general formula 2 1089 = 2 11 ( 1 0 n 2 1 ) 2\cdot 1089 = 2\cdot 11 (10^{n-2}-1) and hence 8 11 ( 1 0 n 2 1 ) ÷ 2 11 ( 1 0 n 2 1 ) = 4. 8\cdot 11(10^{n-2}-1) ÷ 2\cdot 11(10^{n-2}-1)=4.

I had set up a problem upon these amazing number few weeks ago here Reflection .

The equation in the problem should be 9 × d 1 d 2 d 3 d 8 d 9 = d 9 d 8 d 7 d 2 d 1 . 9\times \overline{d_1d_2d_3\cdots d_8d_9}=\overline{d_9d_8d_7\cdots d_{\textcolor{#D61F06}{2}} d_{\textcolor{#D61F06}{1}}}.

Jon Haussmann - 2 years, 6 months ago

Log in to reply

Thank you Sir

Naren Bhandari - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...