How Many Pairs?

x 2 + 615 = 2 y \large \displaystyle x^2+615=2^y

Let ( x 1 , y 1 ) , ( x 2 , y 2 ) , , ( x n , y n ) \displaystyle (x_{1},y_{1}),(x_{2},y_{2}),\ldots,(x_{n},y_{n}) be the integral solution pairs ( x , y ) \displaystyle (x,y) to the equation above such that x 1 < x 2 < x 3 < . < x n \displaystyle x_1<x_2<x_3<\ldots.<x_n .

Determine the value of i = 1 n ( 1 ) i x i y i \displaystyle \sum\limits_{i=1}^n (-1)^ix_iy_i .


The answer is 1416.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mathh Mathh
Jul 21, 2014

Notice that x 0 x\neq 0 . Also notice that y > 0 y>0 .

Let x > 0 x>0 , since if ( x , y ) (x,y) is a solution, so is ( x , y ) (-x,y) . If we know all the positive solutions, we'll know all the negative ones.

Notice that { x 2 0 ( m o d 3 ) or x 2 1 ( m o d 3 ) \begin{cases}x^2\equiv 0\pmod 3\\\text{or}\\x^2\equiv 1\pmod 3\end{cases} for all x Z x\in\mathbb Z . x 2 + 615 x 2 ( 1 ) y ( m o d 3 ) \displaystyle x^2 + 615 \equiv x^2\equiv (-1)^y\pmod 3

Hence y y is even. Let y = 2 m y=2m , where m N m\in\mathbb N .

x 2 + 615 = 2 2 m ( 2 m + x ) ( 2 m x ) = 615 = 3 5 41 \displaystyle x^2+615=2^{2m}\iff (2^m+x)(2^m-x)=615=3\cdot5\cdot 41

Since 2 m + x > 2 m x 2^m+x>2^m-x , the only possibilities are

{ { 2 m + x = 615 2 m x = 1 or { 2 m + x = 205 2 m x = 3 or { 2 m + x = 123 2 m x = 5 or { 2 m + x = 41 2 m x = 15 \displaystyle \begin{cases}\begin{cases}2^m+x=615\\2^m-x=1\end{cases}\\\text{or}\\\begin{cases}2^m+x=205\\2^m-x=3\end{cases}\\\text{or}\\\begin{cases}2^m+x=123\\2^m-x=5\end{cases}\\\text{or}\\\begin{cases}2^m+x=41\\2^m-x=15\end{cases}\end{cases}

The only integer solution to any of the systems of equations above is { x = 59 m = 6 y = 12 \begin{cases}x=59\\m=6\iff y=12\end{cases}

Hence ( 59 , 12 ) (59,12) and ( 59 , 12 ) (-59,12) are the only integer solutions.

i = 1 2 ( 1 ) i x i y i = x 1 y 1 + x 2 y 2 = 59 12 + 59 12 = 1416 \displaystyle \sum_{i=1}^{2}(-1)^ix_iy_i=-x_1y_1+x_2y_2=59\cdot12+59\cdot12=\boxed{1416}

A real excellence. Thanks. .

Niranjan Khanderia - 6 years, 10 months ago

yeah that's what i did. awesome question

Rayyan Shahid - 6 years, 9 months ago

Log in to reply

Thanks.. :-D

Satvik Golechha - 6 years, 8 months ago

Really nice. Thank u so much

vu van luan - 6 years, 1 month ago

Nice solution, exactly what I did :)

Paola Ramírez - 6 years ago

Totally Awesome solution. Thanks. :D

Satvik Golechha - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...