how many roots

Geometry Level pending

cos ( x ) + cos ( 2 x ) + cos ( 5 x ) = 0 \cos (x) + \cos (2x) + \cos (5x) = 0

Find the number of roots for x [ 0 , π ] x \in [0, \pi] .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

cos x + cos ( 2 x ) + cos ( 5 x ) = 0 cos x + cos ( 5 x ) + cos ( 2 x ) = 0 2 cos ( 3 x ) cos ( 2 x ) + cos ( 2 x ) = 0 cos ( 2 x ) [ 2 cos ( 3 x ) + 1 ] = 0 cos ( 2 x ) = 0 \hspace{12pt}\text{cos }x + \text{cos }(2x) + \text{cos}(5x) = 0\newline\Rightarrow \text{cos }x + \text{cos }(5x) + \text{cos }(2x) = 0\newline\Rightarrow 2\text{cos}(3x)\text{ cos}(2x) + \text{cos}(2x) = 0 \newline\Rightarrow \text{cos}(2x)[2\text{cos}(3x) + 1] = 0\newline\Rightarrow \text{cos}(2x) = 0\hspace{30pt} or 2 cos ( 3 x ) + 1 = 0 \hspace{30pt}2\text{cos}(3x) + 1 = 0

2 x = ( 2 n 1 ) π 2 2x = \Large\frac{(2n-1)\pi}{2}\hspace{30pt} or 3 x = 2 n π ± 2 π 3 \hspace{30pt}3x = 2n\pi \pm\Large\frac{2\pi}{3}

x = π 4 x = \large\frac{\pi}{4} , 3 π 4 ,\large\frac{3\pi}{4}\hspace{30pt} or x = 2 π 9 \hspace{30pt} x = \large\frac{2\pi}{9} , 4 π 9 , \large\frac{4\pi}{9} , 8 π 9 ,\large\frac{8\pi}{9}

So there are 5 5 solutions.

I don't understand the third line, please help! How does 2 cos ( 3 x ) cos ( 2 x ) = cos ( x ) + cos ( 5 x ) 2\cos{(3x)} \cos{(2x)} = \cos{(x)} + \cos{(5x)}

Mahdi Raza - 1 year ago

Log in to reply

Using the formula,

cos ( C ) + cos ( D ) = 2 cos ( C + D 2 ) \text{cos}(C) + \text{cos}(D) = 2\text{cos}\Large\big(\frac{C + D}{2}\big) cos ( C D 2 ) \text{cos}\Large\big(\frac{C-D}{2}\big)

Shikhar Srivastava - 1 year ago

Thank you @Pi Han Goh and @Shikhar Srivastava , I will check it out. Looks quite interesting! Thanks!

Mahdi Raza - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...