How many sides does this mysterious polygon have ?

Level pending

The exterior angle of a regular 18-sided polygon is 88° less than the exterior angle of a regular n-sided polygon. Find the value of n.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yoel Susanto
Feb 24, 2014

180 ( n 1 2 ) × 180 n 1 = ( n 2 2 ) × 180 n 2 88 180\quad -\quad \frac { ({ n }_{ 1 }-2)\times 180 }{ { n }_{ 1 } } \quad =\quad \frac { ({ n }_{ 2 }-2)\times 180 }{ { n }_{ 2 } } -88

180 ( 18 2 ) × 180 18 = ( n 2 2 ) × 180 n 2 88 180\quad -\quad \frac { (18-2)\times 180 }{ 18 } \quad =\quad \frac { ({ n }_{ 2 }-2)\times 180 }{ { n }_{ 2 } } -88

180 ( 16 × 180 18 ) = ( n 2 2 ) × 180 n 2 88 180\quad -\quad \left( 16\quad \times \quad \frac { 180 }{ 18 } \right) \quad =\quad \frac { ({ n }_{ 2 }-2)\times 180 }{ { n }_{ 2 } } -88

180 160 = ( n 2 2 ) × 180 n 2 88 180\quad -\quad 160\quad =\quad \frac { ({ n }_{ 2 }-2)\times 180 }{ { n }_{ 2 } } -88

20 = ( n 2 2 ) × 180 88 n 2 n 2 20\quad =\quad \frac { ({ n }_{ 2 }-2)\times 180-88{ n }_{ 2 }\quad }{ { n }_{ 2 } }

20 n 2 = 180 n 2 360 88 n 2 20{ n }_{ 2 }\quad =\quad { 180n }_{ 2 }-360-88{ n }_{ 2 }

360 = 92 n 2 20 n 2 360\quad =\quad { 92n }_{ 2 }-20{ n }_{ 2 }

n 2 = 5 { n }_{ 2 }\quad =\quad 5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...